Сфе́ра — геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки.
Трапе́ция — выпуклый четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Часто в определении трапеции опускают последнее условие. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
У́гол — геометрическая фигура, образованная двумя лучами, выходящими из одной точки.
Практическое построение окружности возможно с помощью циркуля. Окру́жность — замкнутая плоская кривая, все точки которой равноудалены от заданной точки, лежащей в той же плоскости, что и кривая: эта точка называется центром окружности. Отрезок, соединяющий центр с какой-либо точкой окружности, называется радиусом; радиусом называется также и длина этого отрезка. Окружность разбивает плоскость на две части — конечную внутреннюю и бесконечную внешнюю. Внутренность окружности называется кругом; граничные точки, в зависимости от подхода, круг может включать или не включать.
Радиа́н — угол, соответствующий дуге, длина которой равна её радиусу. Единица измерения плоских углов в Международной системе единиц (СИ), а также в системах единиц СГС и МКГСС.
Э́ллипс — замкнутая плоская кривая, исторически определённая как одно из конических сечений . Название эллипсу дал Аполлоний Пергский в своей «Конике».
Углова́я ско́рость — векторная величина, характеризующая быстроту и направление вращения материальной точки или абсолютно твёрдого тела относительно оси вращения. Модуль угловой скорости для вращательного движения совпадает с мгновенной угловой частотой вращения, а направление перпендикулярно плоскости вращения и связано с направлением вращения правилом правого винта. Строго говоря, угловая скорость представляется псевдовектором, и может быть также представлена в виде кососимметрического тензора.
Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность. Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Эпицикло́ида — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Логарифми́ческая спира́ль или изогональная спираль — особый вид спирали, часто встречающийся в природе.
Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.
Сектор круга — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Сегме́нт кру́га, кругово́й сегмент — часть круга, ограниченная дугой окружности и её хордой или секущей.
В физике кругово́е движе́ние — это вращательное движение материальной точки или тела, когда ось вращения в выбранной системе отсчёта неподвижна и не проходит через центр тела. В этом случае траектория точки или тела является кругом, круговой орбитой. Оно может быть равномерным или неравномерным. Вращение трёхмерного тела вокруг неподвижной оси включает в себя круговое движение каждой его части. Мы можем говорить о круговом движении объекта только если можем пренебречь его размерами, так что мы имеем движение массивной точки на плоскости. Например, центр масс тела может совершать круговое движение.
Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой.
Бидуга́ — гладкая плоская кривая, составленная из двух круговых дуг, меньших полной окружности. Одной из дуг может быть отрезок прямой. Бидуги были предложены для геометрического моделирования кривых с заданными граничными точками и касательными в них. В классе бидуг эта задача имеет целое семейство решений, и требует дополнительных условий для нахождения конкретных кривых. Таковыми могут быть задание кривизны или поворота одной из дуг, фиксированная длина кривой, требование минимизации скачка кривизны в точке сопряжения, и т. п.
Модель Пуанкаре в верхней полуплоскости — это верхняя половина плоскости , обозначаемая ниже как H, вместе с метрикой, которая делает её моделью двумерной гиперболической геометрии.
Сегмент плоской кривой — плоская фигура, заключённая между кривой и её хордой.