Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.
Ква́нтовая хи́мия — направление теоретической химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне. Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия — дисциплина, использующая математические методы квантовой химии, адаптированные для создания специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах, симуляции взаимодействия молекул.
Ква́нтовый компью́тер — вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Квантовый компьютер оперирует не битами, а кубитами, имеющими значения одновременно и 0, и 1. Теоретически это позволяет обрабатывать все возможные состояния одновременно, достигая существенного преимущества над обычными компьютерами в ряде алгоритмов.
Метод молекулярной динамики — метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения
Ри́чард Фи́ллипс Фе́йнман (Фа́йнман) — американский физик, основные достижения относятся к области теоретической физики и квантовой физики. Один из создателей квантовой электродинамики. Лауреат Нобелевской премии по физике.
Ква́нтовая запу́танность — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы её спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот.
Квантовый алгоритм — алгоритм, предназначенный для выполнения на квантовом компьютере.
Ю́рий Ива́нович Ма́нин — советский, впоследствии русско-немецкий математик, алгебраический геометр, педагог. Один из основоположников некоммутативной алгебраической геометрии, теории квантовых вычислений и квантовой информатики.
Методы Мо́нте-Ка́рло (ММК) — группа численных методов для изучения случайных процессов. Суть метода заключается в следующем: процесс описывается математической моделью с использованием генератора случайных величин, модель многократно обсчитывается, на основе полученных данных вычисляются вероятностные характеристики рассматриваемого процесса. Например, чтобы узнать методом Монте-Карло, какое в среднем будет расстояние между двумя случайными точками в круге, нужно взять координаты большого числа случайных пар точек в границах заданной окружности, для каждой пары вычислить расстояние, а потом для них посчитать среднее арифметическое.
Ab initio — обоснование какого-либо явления из естественных законов природы без привлечения дополнительных эмпирических предположений или специальных моделей.
Корпускулярно-волновой дуализм — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Декогере́нция — процесс нарушения когерентности, вызываемый взаимодействием квантовомеханической системы с окружающей средой посредством необратимого с точки зрения термодинамики процесса. Во время протекания этого процесса у самой системы появляются классические черты, которые соответствуют информации, имеющейся в окружающей среде.
Вычисли́тельная хи́мия — раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек. Вычислительная химия использует результаты классической и квантовой теоретической химии, реализованные в виде эффективных компьютерных программ, для вычисления свойств и определения структуры молекулярных систем. В квантовой химии компьютерное моделирование заменило не только традиционные аналитические методы расчета, но во многих случаях и сложный эксперимент. Вычислительная химия позволяет в некоторых случаях предсказать ранее ненаблюдаемые химические явления.
Квантовые методы Монте-Карло — большая семья методов, для исследования сложных квантовых систем. Одна из главных задач — обеспечить надёжное решение квантовой задачи многих тел. Различные варианты этого метода имеют общую особенность: они используют метод Монте-Карло для вычисления многомерных интегралов, возникающих в различных формулировках задачи многих тел. Квантовые методы Монте-Карло позволяют описывать сложные эффекты многих частиц, зашифрованные в волновой функции, выходя за рамки теории среднего поля и предлагая в некоторых случаях точные решения задачи многих тел. В частности, существует численно точный и полиномиальный масштабируемый алгоритм точного изучения статических свойств системы бозонов без геометрической фрустрации. Для фермионов не известно таких алгоритмов, но существуют отдельно алгоритмы, которые дают очень хорошие приближения их статических свойств, и отдельно квантовые алгоритмы Монте-Карло, которые численно точны, но экспоненциально масштабируемы.
Цифровая физика — совокупность теоретических взглядов, основанных на интерпретации, что Вселенная по сути является информацией и, следовательно, является вычислимой. Из данной идеи следует, что Вселенная может пониматься как результат работы некоторой компьютерной программы или как некий вид цифрового вычислительного устройства.
Кибернетическая физика — область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Часть молекулярной физики тоже входит в Кибернетику. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров (идентификации), адаптации, фильтрации, оптимизации, передачи сигналов, распознавания образов и др., развитые в рамках кибернетики. Физические системы также обычно понимаются широко: как системы живой и неживой природы или искусственно созданные, физика которых достаточно изучена и имеются математические модели, пригодные для постановки кибернетических задач. Целью исследования в кибернетической физике является анализ возможности преобразования свойств системы с помощью подачи внешних воздействий того или иного класса и определение вида воздействий, требуемых для данного преобразования. Типичными классами воздействий являются функции, постоянные во времени ; функции, зависящие только от времени, например, периодические ; функции, значение которых в каждый момент времени зависит от результатов измерения наблюдаемых переменных (выходов) системы в тот же или предыдущие моменты времени. Последний случай наиболее интересен и соответствует изучению возможных последствий введения в систему внешних обратных связей.
Квантовая информатика — раздел науки, возникший в конце XX века на стыке квантовой механики, теории алгоритмов и теории информации. В квантовой информатике изучаются общие принципы и законы, управляющие динамикой сложных квантовых систем. Моделью таких систем является квантовый компьютер.
Вычисли́тельная фи́зика — наука, изучающая численные алгоритмы решения задач физики, для которых количественная теория уже разработана. Обычно рассматривается как раздел теоретической физики, но некоторые[кто?] считают её промежуточной ветвью между теоретической и экспериментальной физикой.
Возникнове́ние ква́нтовой фи́зики — процесс длительный и постепенный, который занял свыше 25 лет. От первого возникновения понятия кванта до разработки так называемой копенгагенской интерпретации квантовой механики прошло 27 лет, заполненных интенсивной работой учёных всей Европы. В развитии и понимании квантовой теории приняли участие очень многие люди, как старшего поколения — Макс Борн, Макс Планк, Пауль Эренфест, Эрвин Шрёдингер, так и совсем молодые, ровесники квантовой гипотезы — Вернер Гейзенберг (1901), Вольфганг Паули (1900), Поль Дирак (1902) и т. д.
Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 1980-х. С тех пор была проделана колоссальная работа для построения работающего квантового компьютера.