Вычислительная геометрия — раздел информатики, в котором рассматриваются алгоритмы для решения геометрических задач.
Алгоритм Бентли — Оттманна (1979) позволяет найти все точки пересечений прямолинейных отрезков на плоскости. В нем применяется метод выметающей прямой. В методе используется вертикальная выметающая прямая, движущаяся слева направо, при этом отрезки, которые она пересекает при данной координате , можно упорядочить по координате , тем самым их можно сравнивать между собой. Это сравнение можно осуществить, например, используя уравнение прямой, проходящей через две точки : , где , и , — координаты, соответственно, первой и второй точек отрезка. Выметающая прямая перемещается по так называемым точкам событий. После точки пересечения отрезки следует менять местами, так как, например, самый верхний из пересекающихся отрезков после точки пересечения становится самым нижним. Приведенный ниже алгоритм не рассчитан на случай, когда два отрезка пересекаются больше, чем в одной точке.
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Конфигура́ция прямы́х — это разбиение плоскости, образованное набором прямых. Конфигурации прямых изучается в комбинаторной геометрии, а в вычислительной геометрии строятся алгоритмы для эффективного построения конфигураций.
В теории графов интервальная размерность графа — это инвариант графа, введённый Фредом С. Робертсом в 1969.
Задача о триангуляции многоугольника — классическая задача комбинаторной и вычислительной геометрии, состоящая в нахождении триангуляции многоугольника без дополнительных вершин.
Задача о складном метре — это задача комбинаторной геометрии, которую можно сформулировать следующим образом:
Можно ли непересекающуюся цепочку отрезков преобразовать непрерывным движением без пересечения отрезков так, что все вершины цепочки будут лежать на одной прямой?
Задача о наименьшей окружности или задача о минимальном покрывающем круге — задача о вычислении наименьшей окружности, содержащей все заданные точки из множества на евклидовой плоскости. Соответствующая задача в n-мерном пространстве, задача о наименьшей ограничивающей сфере, вычисляет наименьшую гиперсферу, содержащую все точки заданного множества. Задачу о наименьшей окружности первым поставил английский математик Джеймс Джозеф Сильвестр в 1857.
Бу́левы опера́ции над многоуго́льниками и́ли фигу́рами — это набор булевых операций с одним или несколькими наборами многоугольников в компьютерной графике. Эти наборы операций широко используются в компьютерной графике, САПР и в проектировании электронных схем.
Прямолинейный скелет — это метод представления многоугольника его топологическим скелетом. Прямолинейный скелет подобен в некотором роде срединным осям, но отличается тем, что скелет состоит из отрезков, в то время как срединные оси многоугольника могут включать параболические кривые.
Одновременное вложение графов — это техника визуализации двух и более различных графов на одном и том же множестве помеченных вершин, при которой избегается пересечения рёбер в каждом из графов. Пересечения между рёбрами разных графов разрешаются, не разрешается только пересечение рёбер одного графа.
Рисование под прямыми углами графа — это рисование, при котором вершины представлены точками, а рёбра представлены отрезками или ломаными, не более двух рёбер пересекаются в одной точке, и если два ребра пересекаются, они должны пересекаться под прямыми углами.
Экзистенциальная теория вещественных чисел — это множество всех верных утверждений вида
Задача о наибольшем пустом прямоугольнике или задача о максимальном пустом прямоугольнике — это задача поиска прямоугольника максимального размера, который следует разместить среди препятствий на плоскости. Существует несколько вариантов задачи, в зависимости от особенностей формулировки, в частности, от способов измерения «размера», области и ориентации прямоугольника.
Площадь в задачах визуализации графов — числовая характеристика качества графического представления графа.
Гипотеза Шейнермана, теперь доказанная теорема, утверждает, что любой планарный граф является графом пересечений набора отрезков на плоскости. Эту гипотезу сформулировал Эдвард Шейнерман в своей кандидатской диссертации, следуя более раннему результату, что любой планарный граф можно представить как граф пересечений простых кривых на плоскости. Теорему доказали Чалопин и Гонсалвис.
Многоугольник видимости или область видимости для точки p на плоскости среди препятствий — это многоугольная область всех точек плоскости, видимых из точки p. Многоугольник видимости можно определить для видимости из отрезка или многоугольника. Многоугольники видимости полезны в робототехнике, компьютерных играх и для определения позиций объектов, например, для определения наилучшего расположения охраны в картинных галереях.
Евклидово минимальное остовное дерево — это минимальное остовное дерево набора из n точек на плоскости, где вес ребра между любой парой точек является евклидовым расстоянием между двумя точками. Простыми терминами, EMST связывает набор точек с помощью отрезков так, что общая длина всех отрезков минимальна и любая точка может быть достигнута из другой точки по этим отрезкам.
Задача о паре ближайших точек — это задача вычислительной геометрии. Дано n точек в метрическом пространстве, нужно найти пару точек с наименьшим расстоянием между ними.
Алгоритм заметающей прямой или алгоритм выметания плоскости — это алгоритмическая парадигма, которая использует умозрительную выметающую прямую или выметающую поверхность для решения различных задач в евклидовом пространстве. Это одна из ключевых техник в вычислительной геометрии.