Закон исключённого третьего — закон классической логики, который формулируется следующим образом: два противоречащих суждения не могут быть оба ложными, одно из них будет истинно: а есть либо b, либо не b. Истинно либо утверждение некоторого факта, либо его отрицание. Третьего не дано.
Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание. Чаще всего упоминают:
- Квантор всеобщности.
- Квантор существования.
- Квантор единственности.
Доказательство «от противного», или апагогическое косвенное доказательство, — вид доказательства, при котором «доказывание» некоторого суждения осуществляется через опровержение отрицания этого суждения — антитезиса. Этот способ доказательства основывается на истинности закона двойного отрицания в классической логике.
Интуициони́стская ло́гика — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930 году.
Стре́лка Пи́рса — бинарная логическая операция, булева функция над двумя переменными. Введена в рассмотрение Чарльзом Пирсом в 1880—1881 годах.
Отрица́ние в логике — унарная операция над суждениями, результатом которой является суждение, «противоположное» исходному. Обозначается знаком ¬ перед или чертой — над суждением.
Зако́н контрапози́ции — закон классической логики, утверждающий, что в том случае, если некая посылка A влечёт некое следствие B, то отрицание этого следствия влечёт отрицание этой посылки. Суть его заключается в простом умозаключении: если из истинности некоторого утверждения следует истинность другого, то в случае ложности второго утверждения первое никак не может быть истинным, поскольку иначе было бы истинным и второе.
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и их корректность определяют статус любых математических результатов.
Многозначная логика — это логика высказываний, в которой существует более двух истинностных значений логического выражения. Традиционно, в классической логике Аристотеля, мы имеем дело только с двумя возможными значениями — «истиной» или «ложью». Однако данная двухзначная логика может быть дополнена до n — значной с n > 2. Наиболее популярными в литературе являются трехзначная логика, конечнозначная и бесконечнозначная логики.
Кризис оснований математики — термин, обозначающий поиск фундаментальных основ математики на рубеже XIX и XX веков.
Соответствие Карри — Ховарда — наблюдаемая структурная эквивалентность между математическими доказательствами и программами, которая может быть формализована в виде изоморфизма между логическими системами и типизированными исчислениями.
Неклассические логики — группа формальных систем, существенно отличающихся от классических логик путём различных вариаций законов и правил. Благодаря этим вариациям возможно построение различных моделей логических выводов и логической истины.
Закон противоречия — закон логики, который гласит, что два несовместимых суждения не могут быть одновременно истинными — по крайней мере одно из них ложно.
Логика высшего порядка в математике и логике — форма предикатной логики, которая отличается от логики первого порядка дополнительными предикатами над предикатами, кванторами над ними, и, соответственно, более богатой семантикой. Логики высшего порядка с их стандартными семантиками более выразительны, но их модельно-теоретические свойства значительно более сложны для изучения и применения по сравнению с логикой первого порядка.
А́лгебра Линденба́ума — Та́рского в математической логике определяется для логической теории как множество классов логически равносильных предложений этой теории. Для этих классов определены обычные логические операции.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — и для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
Минимальная логика — это специальная логическая система, в которой при операциях с высказываниями не применяется ни закон исключённого третьего, ни то следствие, вытекающее из закона противоречия, по которому из противоречия следует всё что угодно.
Паранепротиворечивая логика — стремление формальной системы к решению проблемы противоречий, с помощью метода дифференциации. Представляет собой область, занимающуюся изучением и развитием «устойчивым к противоречиям» систем, исключающих принцип взрыва.