Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Имплика́ция — бинарная логическая связка, по своему применению приближенная к союзам «если…, то…».
Закон исключённого третьего — закон классической логики, который формулируется следующим образом: два противоречащих суждения не могут быть оба ложными, одно из них будет истинно: а есть либо b, либо не b. Истинно либо утверждение некоторого факта, либо его отрицание. Третьего не дано.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.
Логика высказываний, пропозициональная логика или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Непротиворечи́вость — свойство формальной системы, заключающееся в невыводимости из неё противоречия. Если отрицание какого-то предложения из системы может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Непротиворечивость системы означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто. Требование непротиворечивости является обязательным требованием к научной и, в частности, логической теории. Противоречивая система заведомо несовершенна: наряду с истинными положениями она включает также ложные; в ней что-то одновременно и доказывается, и опровергается. Во многих системах имеет место закон Дунса Скота. В этих условиях доказуемость противоречия означает, что становится доказуемым.
Законы де Мо́ргана — логические правила, связывающие пары логических операций при помощи логического отрицания. Названы в честь шотландского математика Огастеса де Моргана. В краткой форме звучат так:
- Отрицание конъюнкции есть дизъюнкция отрицаний.
- Отрицание дизъюнкции есть конъюнкция отрицаний.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Отрица́ние в логике — унарная операция над суждениями, результатом которой является суждение, «противоположное» исходному. Обозначается знаком ¬ перед или чертой — над суждением.
Доведение до абсурда, приведение к нелепости, или апагогия — логический приём, которым доказывается несостоятельность какого-нибудь мнения таким образом, что или в нём самом, или же в вытекающих из него следствиях обнаруживается противоречие.
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и их корректность определяют статус любых математических результатов.
Тавтологией в логике называется тождественно истинное высказывание, инвариантное относительно значений своих компонентов.
Многозначная логика — это логика высказываний, в которой существует более двух истинностных значений логического выражения. Традиционно, в классической логике Аристотеля, мы имеем дело только с двумя возможными значениями — «истиной» или «ложью». Однако данная двухзначная логика может быть дополнена до n — значной с n > 2. Наиболее популярными в литературе являются трехзначная логика, конечнозначная и бесконечнозначная логики.
Логика Хоара — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам.
Кризис оснований математики — термин, обозначающий поиск фундаментальных основ математики на рубеже XIX и XX веков.
Функциональная полнота множества логических операций или булевых функций — это возможность выразить все возможные значения таблиц истинности с помощью формул из элементов этого множества. Математическая логика обычно использует такой набор операций: конъюнкция, дизъюнкция, отрицание, импликация и эквиваленция. Это множество операций является функционально полным. Но оно не является минимальной функционально полной системой, поскольку:
Натуральный вывод — тип логических исчислений, использующий для доказательства утверждений правила вывода, близкие к обычным содержательным методам рассуждений.
В классической логике, интуиционистской логике и подобных логических системах используется принцип взрыва, или принцип Псевдо-Скотуса — закон, согласно которому любое утверждение может быть доказано из противоречия. То есть, после утверждения противоречия из него можно вывести любое утверждение ; что также известно как дедуктивный взрыв.