Замеча́тельные преде́лы — термины, использующиеся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Рассмотрим случай . Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью . Пусть — точка пересечения второй стороны угла с единичной окружностью, а точка — с касательной к этой окружности в точке . Точка — проекция точки на ось .
Очевидно, что:
(1)
(где — площадь сектора )
Поскольку :
Подставляя в (1), получим:
Так как при :
Умножаем на :
Перейдём к пределу:
Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия:
Доказательство следствий
Второй замечательный предел
или
Доказательство существования второго замечательного предела:
Доказательство для натуральных значений x
Докажем вначале теорему для случая последовательности
С увеличением число положительных слагаемых в правой части равенства (1) увеличивается. Кроме того, при увеличении число убывает, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому (3).
Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .
Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограничена, значит имеет предел, обозначаемый буквой e. Т.е.
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .
2. Пусть . Сделаем подстановку , тогда
.
Очевидно, из двух этих случаев вытекает, что для вещественного x.
Следствия
для ,
Доказательства следствий
Применение
Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.
Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Экспоне́нта — показательная функция , где — число Эйлера.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Формула Эйлера связывает комплексную экспоненту с тригонометрическими функциями. Названа в честь Леонарда Эйлера, который её ввёл.
Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.
Ниже приведён список интегралов от тригонометрических функций. В списке везде опущена аддитивная константа интегрирования.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Вычисление производной — важнейшая операция в дифференциальном исчислении. Эта статья содержит список формул для нахождения производных от некоторых функций.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями.
Фу́нкция Гудерма́на — функция, показывающая связь тригонометрических и гиперболических функций без привлечения комплексных чисел. Названа в честь немецкого математика Кристофа Гудермана. Обозначается или Возникает в задаче отображения плоскости на сферу в картографической проекции Меркатора.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Обра́тные тригонометри́ческие фу́нкции — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
арксинус
арккосинус
арктангенс
арккотангенс
арксеканс
арккосеканс
Гипергеометри́ческая фу́нкция — одна из специальных функций. Определяется внутри круга как сумма гипергеометрического ряда
Это список пределов и правил их вычисления для основных функций. В перечисленных ниже примерах a и b являются константами относительно x.
Универсальная тригонометрическая подстановка, в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
У́гол паралле́льности в геометрии Лобачевского — угол между перпендикуляром к данной прямой и асимптотически параллельной прямой, проведённой из точки, не лежащей на данной прямой.
В математике существует несколько интегралов, известных как интеграл Дирихле, названные в честь немецкого математика Петера Густава Лежена Дирихле, один из которых является несобственным интегралом функции sinc по положительной действительной прямой:
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.