А́лгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления, причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Циклическая группа — группа , которая может быть порождена одним элементом a, то есть все её элементы являются степенями a. Математическое обозначение: .
Конгруэнцией в общей алгебре называют отношение эквивалентности на алгебраической структуре, согласующееся с алгебраическими операциями, определёнными на указанной структуре. Согласованность означает, что выполнение операций над эквивалентными элементами структуры даст также эквивалентные элементы. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую фактор-структуру со сходными операциями, носителем которой будет фактормножество, чьи элементы — классы эквивалентности исходной структуры по отношению к конгруэнции.
Части́чно упоря́доченное мно́жество — математическое понятие, которое формализует интуитивные идеи упорядочения, расположения элементов в определённой последовательности. Неформально, множество частично упорядочено, если указано, какие элементы следуют за какими. В общем случае может оказаться так, что некоторые пары элементов не связаны отношением «следует за».
Полукольцо — общеалгебраическая структура, похожая на кольцо, но без требования существования противоположного по сложению элемента.
Ба́наховой алгеброй над комплексным или действительным полем называется ассоциативная алгебра, являющаяся при этом банаховым пространством. При этом умножение в ней должно быть согласовано с нормой:
- .
Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной , что . Аналогично, множество кортежей натуральных чисел называется арифметическим, если существует такая формула , что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул и, вообще, об арифметических множествах любых объектов, кодируемых натуральными числами.
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, использующий сходства между различными алгебраическими структурами — группами, кольцами, модулями, решётками, вводящий присущие им всем понятия и устанавливающий общие для всех них утверждения. Занимает промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.
Факторсистема в универсальной алгебре — объект, получаемый разбиением алгебраической системы на классы смежности отношением эквивалентности, стабильным по отношению к её основным операциям, и, соответственно, являющийся также алгебраической системой. Факторалгебра — факторсистема, получаемая над алгеброй, фактормодель — факторсистема над моделью.
Коммутативное кольцо — кольцо, в котором операция умножения коммутативна. Изучением свойств коммутативных колец занимается коммутативная алгебра.