А́лгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Число́ — одно из основных понятий математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей.
Арифме́тика — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа и его свойства. В арифметике рассматриваются измерения, вычислительные операции и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика уделяет внимание определению и анализу понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является древнейшей и одной из основных математических наук; она тесно связана с алгеброй, геометрией и теорией чисел.
Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления, причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Составно́е число́ — натуральное число, имеющее делители, отличные от единицы и самого себя. Каждое составное число является произведением двух или более натуральных чисел, бо́льших единицы. Все натуральные числа делятся на три непересекающиеся категории: простые, составные и единица.
Целыми алгебраическими числами называются комплексные корни многочленов с целыми коэффициентами и со старшим коэффициентом, равным единице.
Ива́н Матве́евич Виногра́дов — советский математик, академик АН СССР (1929) по Отделению физико-математических наук (математика).
Дми́трий Алекса́ндрович Гра́ве — российский и советский математик, создатель первой крупной русской математической школы; академик УАН, почётный член Академии наук СССР. Член Санкт-Петербургского математического общества.
Га́уссовы це́лые чи́сла — это комплексные числа, у которых как вещественная, так и мнимая часть — целые числа.
Эдмунд Георг Герман (Ехезкель) Ландау — немецкий математик, который внёс существенный вклад в теорию чисел.
Валентин Константинович Иванов — российский математик, член-корреспондент РАН, специалист в области теории функций, некорректных задач математической физики, лауреат Ленинской премии (1966).
Алекса́ндр О́сипович Ге́льфонд — советский математик, член-корреспондент АН СССР. Известен своими работами по теории чисел, а также решением седьмой проблемы Гильберта. Работал в МГУ (1931—1968) и Математическом институте АН СССР (1933—1968).
Родио́н Оси́евич Кузьми́н (1891—1949) — российский и советский математик, декан технического факультета Пермского университета (1921), доктор физико-математических наук (1935), член-корреспондент АН СССР (1946).
Алексей Иванович Костри́кин — советский и российский математик, специалист в области алгебры и алгебраической геометрии. Член-корреспондент Академии наук СССР (1976). Награждён Государственной премией СССР (1968).
Николай Яковлевич Сонин — русский математик, академик Императорской Академии наук (1893), ординарный профессор, декан физико-математического факультета и и.о. ректора Императорского Варшавского университета. Член Санкт-Петербургского математического общества.
«Арифметические исследования» — первый крупный труд 24-летнего немецкого математика Карла Фридриха Гаусса, опубликованный в Лейпциге в сентябре 1801 года. Эта монография стала ключевым этапом в развитии теории чисел; она содержала как обстоятельное изложение результатов предшественников, так и собственные глубокие результаты Гаусса. Среди последних особенную важность представляли:
- Квадратичный закон взаимности, основа теории квадратичных вычетов. Гаусс впервые дал его доказательство.
- Теория композиции классов и родов квадратичных форм, ставшая важнейшим вкладом в создание теории алгебраических чисел.
- Теория деления круга. Это не только пример приложения общих методов, но и, как далее выяснилось, прообраз на частном примере открытой в 1830-х годах общей теории Галуа.
Аддити́вная тео́рия чи́сел — раздел теории чисел, возникший при изучении задач о разложении целых чисел на слагаемые заданного вида.