Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Функция Вигнера была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в статистической механике, квантовой химии, квантовой оптике, классической оптике и анализе сигналов в различных областях, таких как электроника, сейсмология, акустика, биология. При анализе сигналов используются названия преобразование Вигнера — Вилла и распределение Вигнера — Вилла.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Функция статистического распределения — плотность вероятности в фазовом пространстве. Одно из основополагающих понятий статистической физики. Знание функции распределения полностью определяет вероятностные свойства рассматриваемой системы.
Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения, теорема о равнораспределении — связывает температуру системы с её средней энергией в классической статистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.
Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина.
В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов
- ,
Уравнение состояния Бенедикта — Вебба — Рубина — многопараметрическое уравнение состояния, полученное в работах 1940—42 годов Мэнсоном Бенедиктом, Джорджем Веббом (Уэббом) и Льюисом Рубином в ходе улучшения уравнения Битти — Бриджмена. Уравнение было получено корреляцией термодинамических и волюметрических данных жидких и парогазообразных лёгких углеводородов, а также их смесей. Уравнение, в отличие от уравнения Редлиха — Квонга, не является кубическим относительно коэффициента сжимаемости , однако при этом структура уравнения Бенедикта — Вебба — Рубина позволяет описывать состояние широкого класса веществ.
Микроканонический ансамбль — статистический ансамбль макроскопической изолированной системы с постоянными значениями объёма V, числа частиц N и энергии E. Понятие микроканонического ансамбля является идеализацией, так как в действительности полностью изолированных систем не существует. В микроканоническом распределении Гиббса все микроскопические состояния, отвечающие данной энергии, равновероятны согласно эргодической гипотезе. Теорема Гиббса, доказанная автором, утверждает, что малую часть микроканонического ансамбля можно рассматривать в качестве канонического ансамбля.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Производящий функционал — расширение понятия производящей функции моментов для одномерного / конечномерного распределения Гаусса на континуальное распределение Гаусса.
Тест Адлемана-Померанса-Румели — наиболее эффективный, детерминированный и безусловный на сегодняшний день тест простоты чисел, разработанный в 1983 году. Назван в честь его исследователей — Леонарда Адлемана, Карла Померанса и Роберта Румели. Алгоритм содержит арифметику в цикломатических полях.
Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.
Монотонный оператор — оператор, удовлетворяющий условию монотонности. Понятие монотонного оператора является обобщением понятия монотонной функции. Широко применяется в функциональном анализе при исследовании и приближённом решении краевых задач для дифференциальных уравнений с частными производными.
Моде́ль расту́щего разнообра́зия това́ров — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами. В модели технологический прогресс является следствием целенаправленной деятельности экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Модель внесла существенный вклад в понимание того, каким образом решения индивидов влияют на темпы экономического роста, а также причин, по которым бедные страны не могут догнать богатые. Разработана в 1988 году Полом Ромером.
Параметр Грюнайзена — безразмерный параметр, который описывает влияние изменения объёма кристаллической решётки на его вибрационные свойства и, как следствие, влияние изменения температуры на размер или динамику решётки. Параметр обычно обозначаемый γ назван в честь Эдуарда Грюнайзена. Под этим термином понимают одно термодинамическое свойство, которое является средневзвешенным средним значением многих отдельных параметров γi, входящих в первоначальную формулировку модели Грюнайзена в терминах фононных нелинейностей.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
Модель SABR - в финансовой математике модель динамики цен активов или процентных ставок со стохастической волатильностью следующего вида: