
Изоморфи́зм — соотношение между математическими объектами, выражающее общность их строения; используется в разных разделах математики и в каждом из них определяется в зависимости от структурных свойств изучаемых объектов. Обычно изоморфизм определяется для множеств, наделённых некоторой структурой, например, для групп, колец, линейных пространств; в этом случае он определяется как обратимое отображение (биекция) между двумя множествами со структурой, сохраняющее эту структуру, то есть показывающее, что объекты «одинаково устроены» в смысле этой структуры. Если между объектами существует изоморфизм, то они называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких структур.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.

Веще́ственное число́ — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.

Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом
. Предложены Уильямом Гамильтоном в 1843 году.

Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.

В математике, если заданы две группы (G, ∗) и (H, •), гомоморфизм групп из (G, ∗) в (H, •) — это функция h : G → H, такая, что для всех u и v из G выполняется

Прямое произведение — множество, элементами которого являются все возможные упорядоченные пары элементов заданных двух непустых исходных множеств. Предполагается, что впервые «декартово» произведение двух множеств ввёл Георг Кантор.

Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.

То́чка — один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом. Нестрого можно представлять точку как неделимый элемент соответствующего математического пространства, определяемого в геометрии, математическом анализе и других разделах математики. В классической геометрии и в большинстве её обобщений все геометрические фигуры считаются состоящими из точек.

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Числова́я фу́нкция — функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество). Числовые множества — это множества натуральных, целых, рациональных, вещественных и комплексных чисел вместе с определёнными для соответствующих множеств алгебраическими операциями. Для всех перечисленных числовых множеств, кроме комплексных чисел, определено также отношение линейного порядка, позволяющее сравнивать числа по величине. Числовые пространства — это числовые множества вместе с функцией расстояния, заданной на соответствующем множестве.
Существенный супремум — это аналог супремума, более подходящий для нужд функционального анализа. В этой науке обычно не интересуются тем, что происходит на множестве меры нуль, что учитывается в определении.

Формула включений-исключений — комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом. В теории вероятностей аналог принципа включений-исключений известен как формула Пуанкаре.
Ба́наховой алгеброй над комплексным или действительным полем называется ассоциативная алгебра, являющаяся при этом банаховым пространством. При этом умножение в ней должно быть согласовано с нормой:
.
Бикватернионы — комплексификация (расширение) обычных (вещественных) кватернионов.

Пространство столбцов матрицы
— это линейная оболочка её вектор-столбцов. Пространство столбцов матрицы также является образом или областью значений соответствующего ей отображения.

Вещественнозначная функция — функция, значениями которой являются вещественные числа. Другими словами, это функция, которая назначает вещественное число каждому элементу области определения функции.