Интегральный признак Коши́ — Макло́рена — признак сходимости убывающего положительного числового ряда. Признак Коши — Маклорена даёт возможность свести проверку сходимости ряда к проверке сходимости несобственного интеграла соответствующей функции на , последний часто может быть найден в явном виде.
. Поэтому ограничена. А так как она неубывающая, то она сходится.
Если расходится, то есть , то
значит ряд расходится.
Теорема доказана.
Примеры ("эталонные" ряды)
Обобщённый гармонический ряд сходится при и расходится при , так как
(случай ),
при ,
при .
сходится при и расходится при . Для обоснования нужно рассмотреть .
На основе сравнения с этими рядами основаны признаки Раабе, Гаусса, Бертрана и некоторые другие. Серию "эталонных" рядов можно продолжить, и на их основе построить семейство все более тонких признаков для медленно сходящихся рядов.
Оценка остатка ряда
Интегральный признак Коши позволяет оценить остаток знакоположительного ряда. Из полученного в доказательстве выражения
Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
Критерий Коши — ряд утверждений в математическом анализе:
Критерий сходимости последовательности — на котором основывается определение полного метрического пространства.
Критерий Коши или число Коши — критерий подобия в механике сплошных сред.
Ряд в математике — одно из центральных понятий математического анализа, математическая концепция, представляющая собой сумму бесконечного числа слагаемых, упорядоченных в определённой последовательности. В простейшем случае ряд записывается как бесконечная сумма чисел:
Краткая запись:
(иногда нумерацию слагаемых начинают не с 1, а с нуля).
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Определённый интеграл называется несобственным, если выполняется по крайней мере одно из следующих условий.
Область интегрирования является бесконечной. Например, является бесконечным промежутком .
Функция является неограниченной в окрестности некоторых точек области интегрирования.
Сходящийся ряд называется сходящимся абсолютно, если сходится ряд из модулей , иначе — сходящимся условно.
Признак Дирихле — теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Признак Ди́ни — признак поточечной сходимости ряда Фурье. Несмотря на то, что ряд Фурье функции из сходится к ней в смысле -нормы, он вовсе не обязан сходиться к ней поточечно. Тем не менее при некоторых дополнительных условиях поточечная сходимость всё же имеет место.
— это пространства измеримых функций, таких, что их -я степень интегрируема, где .
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости. В теорию характеристических функций внесли большой вклад Ю. В. Линник, И. В. Островский, К. Р. Рао, Б. Рамачандран.
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
Признак Ермакова — признак сходимости числовых рядов с положительными членами, установленный Василием Ермаковым. Его специфика заключается в том, что он превосходит все прочие признаки своей «чувствительностью». Эта работа опубликована в статьях: «Общая теория сходимости рядов», «Новый признак сходимости и расходимости бесконечных знакопеременных рядов».
Формула суммирования Эйлера — Маклорена — формула, позволяющая выражать дискретные суммы значений функции через интегралы от функции. В частности, многие асимптотические разложения сумм получаются именно через эту формулу.
Теорема Риса о полноте — утверждение функционального анализа о полноте пространства Лебега . Названа по имени венгерского математика Фридьеша Риса, установившего результат.
При́знаки сходи́мости числового ряда — методы, позволяющие установить сходимость или расходимость бесконечного ряда
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.