Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Интерполя́ция, интерполи́рование — в вычислительной математике нахождение неизвестных промежуточных значений некоторой функции, по имеющемуся дискретному набору её известных значений, определенным способом. Термин «интерполяция» впервые употребил Джон Валлис в своём трактате «Арифметика бесконечных» (1656).
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
В математике, поточечная сходимость последовательности функций на множестве — это вид сходимости, при котором каждой точке данного множества ставится в соответствие предел последовательности значений элементов последовательности в этой же точке.
Полунепреры́вность в математическом анализе — это свойство функции более слабое, чем непрерывность. Функция полунепрерывна снизу в точке, если значения функции в близких точках не сильно меньше значения функции в ней. Функция полунепрерывна сверху в точке, если значения функции в близких точках не сильно превышают значения функции в ней.
Числова́я фу́нкция — функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество). Числовые множества — это множества натуральных, целых, рациональных, вещественных и комплексных чисел вместе с определёнными для соответствующих множеств алгебраическими операциями. Для всех перечисленных числовых множеств, кроме комплексных чисел, определено также отношение линейного порядка, позволяющее сравнивать числа по величине. Числовые пространства — это числовые множества вместе с функцией расстояния, заданной на соответствующем множестве.
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
Квазивыпуклая функция — обобщение понятия выпуклой функции, нашедшее широкое применение в нелинейной оптимизации, в частности, при применении оптимизации к вопросам экономики.
Арифметическая комбинаторика — междисциплинарная область математики, изучающая зависимость между структурами, образуемыми в поле операцией сложения и операцией умножения.
Вещественно-аналитическая функция — вещественная функция, представимая в окрестности каждой точки степенным рядом. Эквивалентное определение: вещественная функция, равная в окрестности каждой точки области определения своему ряду Тейлора.