Фотолитогра́фия — метод получения определённого рисунка на поверхности материала, широко используемый в микроэлектронике и других видах микротехнологий, а также в производстве печатных плат. Один из основных приёмов планарной технологии, используемой в производстве полупроводниковых приборов.
Ио́нный исто́чник — устройство для получения направленных потоков (пучков) ионов. Ионный источник является важной частью ускорителей заряженных частиц, масс-спектрометров, ионных микроскопов, электромагнитных разделителей изотопов и многих других устройств.
Като́дные лучи́, также называемые «электронными пучками» — поток электронов, излучаемый катодом вакуумной трубки.
Фоторезист — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.
Электро́нно-лучева́я литогра́фия — метод нанолитография с использованием электронного пучка.
Вакуумное напыление — группа методов напыления покрытий в вакууме, при которых покрытие получается путём прямой конденсации пара наносимого материала.
Ио́нная импланта́ция — способ введения атомов примесей (имплантата) в поверхностный слой материала, например, пластины полупроводника или эпитаксиальной плёнки путём бомбардировки его поверхности пучком ионов с высокой энергией.
Покры́тие в материаловедении – это нанесённый на объект относительно тонкий поверхностный слой из другого материала. Целью нанесения покрытия является улучшение поверхностных свойств основного материала, обычно называемого материалом подложки. Улучшают, среди прочих, такие свойства, как внешний вид, адгезию, смачиваемость, стойкость к коррозии, износостойкость, стойкость к высоким температурам, электропроводность. Покрытия могут наноситься в жидкой, газообразной или твердой фазах, но в результате они составляют одно целое с основным материалом.
Тонкие плёнки — тонкие слои материала, толщина которых находится в диапазоне от долей нанометра до нескольких микрон.
Сфокусированный ионный пучок — широко используемая методика в материаловедении для локального анализа, напыления и травления материалов. Установка для ионного травления напоминает растровый электронный микроскоп. В электронном микроскопе используется пучок электронов, тогда как в СИП применяют более тяжелые частицы — ионы. Бывают установки, использующие оба вида пучков. Не следует путать СИП с устройством для литографии, где также используется ионный пучок, но слабой интенсивности, а в травлении основным является свойства самого резиста.
Рентгеновская литогра́фия — технология изготовления электронных микросхем; вариант фотолитографии, использующий экспонирование (облучение) резиста с помощью рентгеновских лучей.
Плазменно-химическое осаждение из газовой фазы сокр., ПХО; ПХГФО иначе плазмохимическое газофазное осаждение; осаждение из паровой фазы стимулированное плазмой — процесс химического осаждения тонких плёнок из паровой фазы при низком давлении с использованием высокочастотной плазмы.
Промышленные ускорители — ускорители заряженных частиц, применяемые в промышленности. Наибольшее распространение получили небольшие линейные ускорители электронов, либо электростатические, либо импульсные, на энергию 0.1÷5 МэВ. Также широко используются электростатические ускорители ионов для легирования тонкого слоя полупроводников, для нужд микроэлектроники.
Нанопечатная литография — технология, предназначенная для переноса изображения наноструктуры или электронной схемы на подложку с покрытием и включающая деформацию покрытия штампом с последующим травлением деформированного покрытия и формированием на подложке наноструктуры или элементов электронной схемы.
Голографическая интерференционная литография — технология, использующая литографический процесс с экспонированием (облучением) резиста интерферирующими лазерными или ультрафиолетовыми лучами или пучками синхротронного рентгеновского излучения.
Электронно-лучевая плавка — метод плавки путём использования электронного пучка. Применяется при плавке особо чистых материалов, например, сталей и титана, и материалов, стойких к высокой температуре и химическим воздействиям. При электронно-лучевой плавке загрязнение материала посторонними примесями почти отсутствует. Благодаря наличию высокого вакуума имеется возможность удаления примесей из материала. Легкость управления мощностью электронного пучка позволяет использовать разнообразные режимы плавки. Возможна температура расплава, превышающая температуру плавления. Промышленные электронные плавильные печи имеют мощность свыше 200 кВт и выдают слитки длиной до нескольких метров и весом до нескольких тонн.
Электронно-лучевая сварка — сварка, источником энергии при которой являются кинетическая энергия электронов в электронном пучке, сформированном электронной пушкой.
Электронно-лучевая обработка — широкий спектр процессов (технологий), при которых для технологических целей используют остросфокусированный пучок электронов, движущихся с большой скоростью.
Нанолитография — это область техники в нанотехнологиях, связанная с разработкой структур нанометрового масштаба. В переводе с греческого это слово можно разделить на три части: «нано» — карлик, «лит» — камень и «графи» — писать или «крошечные буквы на камне». Сегодня это слово расширилось, чтобы охватывать проектирование структур в диапазоне от 10 −9 до 10 −6 метров или структур в нанометровом диапазоне. По сути, это поле является производным литографии, охватывающим только структуры значительно меньшего размера. Все нанолитографические методы можно разделить на две категории: те, которые вытравливают молекулы, оставляя желаемую структуру, и те, которые непосредственно записывают желаемую структуру на поверхность.
Силсесквиоксан водорода (англ. HSQ) — полимерное кремнийорганическое соединение с общей формулой (HSiO3/2)8n, применяемое как негативный резист c добавлением метила изобутила кетона в электронно-лучевой литографии. Применяется как заменитель ПММА. При толщине плёнки резиста менее 25 нм демонстрирует разрешение лучше чем 10 нм. Электронный пучок разрушает полимерную цепь превращая резист в аморфный оксид кремния, используемого для стойкой к плазменному травлению маски. NaOH или NH4OH действуют как проявитель на силсесквиоксан водорода в результате чего происходит выделение водорода. Резист очень чувствителен к старению, поэтому для свежеприготовленного вещества получается лучшее разрешение с шириной линии 10 нм.