Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
В математике, если заданы две группы (G, ∗) и (H, •), гомоморфизм групп из (G, ∗) в (H, •) — это функция h : G → H, такая, что для всех u и v из G выполняется
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют независимыми, если известное значение одной из них не дает информации о другой.
Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой.
Фи́нслерова геометрия — одно из обобщений римановой геометрии. В финслеровой геометрии рассматриваются многообразия с финслеровой метрикой; то есть выбором нормы на каждом касательном пространстве, которая гладко меняется от точки к точке.
Тензорное произведение — операция над векторными пространствами, а также над элементами перемножаемых пространств.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Максимальная компактная подгруппа K топологической группы G — это компактное пространство с индуцированной топологией, максимальное среди всех подгрупп. Максимальные компактные подгруппы играют важную роль в классификации групп Ли и, особенно, в классификации полупростых групп Ли. Максимальные компактные подгруппы групп Ли в общем случае не единственны, но единственны с точностью до сопряжённости — они являются существенно сопряжёнными.
K3-поверхность — связная односвязная компактная комплексная поверхность, допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным каноническим расслоением, не допускающая алгебраических 1-форм.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.
Вещественно-аналитическая функция — вещественная функция, представимая в окрестности каждой точки степенным рядом. Эквивалентное определение: вещественная функция, равная в окрестности каждой точки области определения своему ряду Тейлора.