Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
Дерево отрезков — структура данных, позволяющая быстро изменять значения в массиве и находить некоторые функции от элементов массива.
«Разделяй и властвуй» в информатике — схема разработки алгоритмов, заключающаяся в рекурсивном разбиении решаемой задачи на две или более подзадачи того же типа, но меньшего размера, и комбинировании их решений для получения ответа к исходной задаче; разбиения выполняются до тех пор, пока все подзадачи не окажутся элементарными.
Дерево хешей — полное двоичное дерево, в листовые вершины которого помещены хеши от блоков данных, а внутренние вершины содержат хеши от сложения значений в дочерних вершинах. Корневой узел дерева содержит хеш от всего набора данных, то есть хеш-дерево является однонаправленной хеш-функцией. Применяется для эффективного хранения транзакций в блокчейне криптовалют. Оно позволяет получить «отпечаток» всех транзакций в блоке, а также эффективно верифицировать транзакции. Названо по имени Ральфа Меркла, предложившего в 1979 году соответствующую технику хеширования криптографических функций.
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться также трудно обратимыми или необратимыми.
Раскраска графа — теоретико-графовая конструкция, частный случай разметки графа. При раскраске элементам графа ставятся в соответствие метки с учётом определённых ограничений; эти метки традиционно называются «цветами». В простейшем случае такой способ окраски вершин графа, при котором любым двум смежным вершинам соответствуют разные цвета, называется раскраской вершин. Аналогично раскраска рёбер присваивает цвет каждому ребру так, чтобы любые два смежных ребра имели разные цвета. Наконец, раскраска областей планарного графа назначает цвет каждой области, так, что каждые две области, имеющие общую границу, не могут иметь одинаковый цвет.
В информатике временна́я сложность алгоритма определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая учитывает только слагаемое самого высокого порядка, а также не учитывает константные множители, то есть коэффициенты. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, то есть при стремлении размера входа к бесконечности. Например, если существует число , такое, что время работы алгоритма для всех входов длины не превосходит , то временную сложность данного алгоритма можно асимптотически оценить как .
В математике суперлогарифм — это одна из двух обратных функций тетрации.
Вычисли́мые фу́нкции — множество функций то есть отображения множества натуральных чисел во множество натуральных чисел, в математических обозначениях это которые могут быть реализованы некоторым, алгоритмом, описание которого конечно, например, описанием переходов некоторой машиной Тьюринга.
Умножение Карацубы — метод быстрого умножения, позволяющий перемножать два -значных числа с битовой вычислительной сложностью .
Задача Иосифа Флавия — задача, входящая в одну из ранних работ по занимательной математике Баше де Мезириака. Задача заключается в следующем: по кругу стоит 41 воин, начиная с первого воина они убивают каждого третьего. Спрашивается, в каком месте нужно встать, чтобы остаться последним выжившим. В более общей формулировке участвует n воинов, которые считаются по кругу, и убивают каждого m-го. Название задачи восходит к истории, случившейся с Иосифом Флавием во время Иудейской войны.
Тест Соловея — Штрассена — вероятностный тест простоты, открытый в 1970-х годах Робертом Мартином Соловеем совместно с Фолькером Штрассеном. Тест всегда корректно определяет, что простое число является простым, но для составных чисел с некоторой вероятностью он может дать неверный ответ. Основное преимущество теста заключается в том, что он, в отличие от теста Ферма, распознает числа Кармайкла как составные.
Алгоритм Фюрера — быстрый метод умножения больших целых чисел. Алгоритм был построен в 2007 году швейцарским математиком Мартином Фюрером из университета штата Пенсильвания как асимптотически более быстрый алгоритм, чем его предшественник, алгоритм Шёнхаге — Штрассена, опубликованный в 1971 году. Задача быстрого умножения больших чисел представляет большой интерес в области криптографии с открытым ключом.
В информатике префиксная сумма, кумулятивная сумма, инклюзивное сканирование или просто сканирование последовательности чисел x0, x1, x2, … называется последовательность чисел y0, y1, y2, …, являющаяся префиксной суммой от входной последовательности:
- y0 = x0
- y1 = x0 + x1
- y2 = x0 + x1+ x2
- …
SM3 — криптографическая хэш-функция, являющаяся частью национального криптографического стандарта Китая. Она была опубликована Государственным управлением криптографии 17 декабря 2010 под названием «GM/T 0004-2012: криптографический хэш алгоритм SM3». SM3 в основном используется в электронных подписях, имитовставках и генераторах псевдослучайных чисел.