Функция называется квазивогнутой (строго квазивогнутой), если является квазивыпуклой (строго квазивыпуклой).
Аналогично, функция является квазивогнутой, если
и строго квазивогнутой если
Функция, которая одновременно является квазивыпуклой и квазивогнутой, называется квазилинейной.
Примеры
Произвольная выпуклая функция является квазивыпуклой, произвольная вогнутая функция является квазивогнутой.
Функция является квазилинейной на множестве положительных действительных чисел.
Функция является квазивогнутой на множестве (множество пар неотрицательных чисел) но не является ни выпуклой, ни вогнутой.
Функция является квазивыпуклой и не является ни выпуклой, ни непрерывной.
Свойства
Функция , где — выпуклое множество, квазивыпуклая тогда и только тогда, когда для всех множество
выпукло
Доказательство. Пусть множество выпуклое для любого β. Зафиксируем две произвольные точки и рассмотрим точку Точки при . Поскольку множество выпуклое, то, а, значит, то есть выполняется неравенство, приведённое в определении, и функция является квазивыпуклой.
Пусть функция f квазивыпуклая. Для некоторого зафиксируем произвольные точки Тогда . Поскольку X — выпуклое множество, то для любого точка . Из определения квазивыпуклости следует, что , то есть . Отже, — выпуклое множество.
Непрерывная функция , где X — выпуклое множество в , квазивыпуклая тогда и только тогда, когда выполняется одно из следующих условий:
f — неубывающая;
f — невозрастающая;
существует такая точка , что для всех функция f невозрастающая, и для всех функция f неубывающая.
Дифференцируемые квазивыпуклые функции
Пусть — дифференцируемая функция на X, где — открытое выпуклое множество. Тогда f квазивыпукла на X тогда и только тогда, когда выполняется соотношение:
для всех .
Пусть f — дважды дифференцируемая функция. Если f квазивыпуклая на X, то выполняется условие:
для всех .
Необходимые и достаточные условия квазивыпуклости и квазивогнутости можно также дать через так называемую окаймлённую матрицу Гессе. Для функции определим для определители:
Тогда справедливы утверждения:
Если функция f квазивыпукла на множестве X, тогда Dn(x) ≤ 0 для всех n и всех x из X.
Если функция f квазивогнута на множестве X, тогда D1(x) ≤ 0, D2(x) ≥ 0, …, (-1)mDm(x) ≤ 0 для всех x с X.
Если Dn(x) ≤ 0 для всех n и всех x с X, то функция f квазивыпуклая на множестве X.
Если D1(x) ≤ 0, D2(x) ≥ 0, …, (-1)mDm(x) ≤ 0 для всех x с X, функция f квазивогнута на множестве X.
Операции, сохраняющие квазивыпуклость
Максимум взвешенных квазивыпуклых функций с неотрицательными весами, то есть
где
композиция с неубывающей функцией (если — квазивыпуклая, — неубывающая, тогда является квазивыпуклой).
минимизация (если f(x, y) является квазивыпуклой, C — выпуклое множество, тогда является квазивыпуклой).
Alpha C Chiang, «Fundamental Methods of Mathematical Economics, Third Edition», McGraw Hill Book Company, 1984.
Похожие исследовательские статьи
В математике, целая часть вещественного числа — округление до ближайшего целого в меньшую сторону. Целая часть числа также называется антье, или пол. Наряду с полом существует парная функция — потолок — округление до ближайшего целого в большую сторону.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Однородная функция степени — числовая функция такая, что для любого из области определения функции и любого выполняется равенство:
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Фу́нкция поле́зности — функция, с помощью которой можно представить предпочтения потребителя на множестве допустимых альтернатив. Числовые значения функции помогают упорядочить альтернативы по степени предпочтительности для потребителя. Большее значение соответствует большей предпочтительности. В современной ординалистской теории полезности сами числа значения не имеют — важны только отношения «больше», «меньше» и «равно».
Пусть есть векторное пространство над полем .
Гессиан функции — симметрическая квадратичная форма, описывающая поведение функции во втором порядке.
Субдифференциал функции f, заданной на банаховом пространстве E — это один из способов обобщить понятие производной на произвольные функции. Хотя при его использовании приходится пожертвовать однозначностью отображения, он оказывается довольно удобным: любая выпуклая функция оказывается субдифференцируемой на всей области определения. В тех случаях, когда о дифференцируемости функции заранее ничего не известно, это оказывается существенным преимуществом.
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.
Бетатронные колебания — быстрые поперечные колебания, совершаемые частицей в фокусирующих магнитных полях ускорителя. Бетатронные колебания — основной предмет изучения электронной оптики, раздела физики ускорителей.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Выпуклое программирование — это подобласть математической оптимизации, которая изучает задачу минимизации выпуклых функций на выпуклых множествах. В то время как многие классы задач выпуклого программирования допускают алгоритмы полиномиального времени, математическая оптимизация в общем случае NP-трудна.
Выпуклое сопряжение функции — это обобщение преобразования Лежандра, которое применяется к невыпуклым функциям. Оно известно также как преобразование Лежандра — Фенхеля или преобразование Фенхеля. Сопряжение используется для преобразования задачи оптимизации в соответствующую двойственную задачу, которую, возможно, проще решить.
Выпуклый анализ — это ветвь математики, посвящённая изучению свойств выпуклых функций и выпуклых множеств, часто имеющая приложения в выпуклом программировании, подобласти теории оптимизации.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.
Оценки Шаудера — оценки на норму Гёльдера решений линейных равномерно эллиптических уравнений в частных производных.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.