Киберне́тика — наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество.
Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Иску́сственный нейро́н — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона. Математически искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход. Такие искусственные нейроны объединяют в сети — соединяют выходы одних нейронов с входами других. Искусственные нейроны и сети являются основными элементами идеального нейрокомпьютера.
Теория распознава́ния о́бразов — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.
Чёрный я́щик — термин, используемый для обозначения системы, внутреннее устройство и механизм работы которой очень сложны, неизвестны или неважны в рамках данной задачи. «Метод чёрного ящика» — метод исследования таких систем, когда вместо свойств и взаимосвязей составных частей системы, изучается реакция системы, как целого, на изменяющиеся условия. Подход чёрного ящика сформировался в точных науках в 1920—1940-х годах и был заимствован другими науками.
Нейро́нная сеть Хо́пфилда — полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия определяются заранее в процессе обучения, они являются локальными минимумами функционала, называемого энергией сети. Такая сеть может быть использована как автоассоциативная память, как фильтр, а также для решения некоторых задач оптимизации. В отличие от многих нейронных сетей, работающих до получения ответа через определённое количество тактов, сети Хопфилда работают до достижения равновесия, когда следующее состояние сети в точности равно предыдущему: начальное состояние является входным образом, а при равновесии получают выходной образ.
Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе. Математическая модель, в частности, предназначена для прогнозирования поведения реального объекта, но всегда представляет собой ту или иную степень его идеализации.
Обуче́ние с учи́телем — один из способов машинного обучения, в ходе которого испытуемая система принудительно обучается с помощью примеров «стимул-реакция». С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Между входами и эталонными выходами (стимул-реакция) может существовать некоторая зависимость, но она неизвестна. Известна только конечная совокупность прецедентов — пар «стимул-реакция», называемая обучающей выборкой. На основе этих данных требуется восстановить зависимость, то есть построить алгоритм, способный для любого объекта выдать достаточно точный ответ. Для измерения точности ответов, так же как и в обучении на примерах, может вводиться функционал качества.
Обучение без учителя — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов, и требуется обнаружить внутренние взаимосвязи, зависимости, закономерности, существующие между объектами.
Перцептро́н — математическая или компьютерная модель восприятия информации мозгом, предложенная Фрэнком Розенблаттом в 1957 году и впервые воплощённая в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.
Тестирование чёрного ящика или поведенческое тестирование — стратегия (метод) тестирования функционального поведения объекта с точки зрения внешнего мира, при котором не используется знание о внутреннем устройстве тестируемого объекта. Под стратегией понимаются систематические методы отбора и создания тестов для тестового набора. Стратегия поведенческого теста исходит из технических требований и их спецификаций.
Эволюционная кибернетика — наука, которая занимается исследованием эволюции биологических информационных систем и обеспечиваемых этими системами кибернетических свойств биологических организмов. Эволюционная кибернетика — это только формирующаяся научная дисциплина, тем не менее это живое, активно развивающееся научное направление.
Кибернетическая физика — область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Часть молекулярной физики тоже входит в Кибернетику. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров (идентификации), адаптации, фильтрации, оптимизации, передачи сигналов, распознавания образов и др., развитые в рамках кибернетики. Физические системы также обычно понимаются широко: как системы живой и неживой природы или искусственно созданные, физика которых достаточно изучена и имеются математические модели, пригодные для постановки кибернетических задач. Целью исследования в кибернетической физике является анализ возможности преобразования свойств системы с помощью подачи внешних воздействий того или иного класса и определение вида воздействий, требуемых для данного преобразования. Типичными классами воздействий являются функции, постоянные во времени ; функции, зависящие только от времени, например, периодические ; функции, значение которых в каждый момент времени зависит от результатов измерения наблюдаемых переменных (выходов) системы в тот же или предыдущие моменты времени. Последний случай наиболее интересен и соответствует изучению возможных последствий введения в систему внешних обратных связей.
Модель жизнеспособной системы является моделью организационной структуры любого жизнеспособного организма или автономной системы. Жизнеспособной системой является любая система, способная поддерживать своё отдельное существование в определенной среде. Одна из основных особенностей жизнеспособных систем в том, что они могут адаптироваться к изменяющимся условиям окружающей среды.
Нейроуправление — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных, способностью адаптироваться к изменению свойств объекта управления и внешней среды, пригодностью для синтеза нелинейных регуляторов, высокой устойчивость к повреждениям своих элементов в силу изначально заложенного в нейросетевую архитектуру параллелизма. Термин «нейроуправление», впервые был использован одним из авторов метода обратного распространения ошибки Полом Дж. Вербосом в 1976 году. Известны многочисленные примеры практического применения нейронных сетей для решения задач управление самолетом, вертолетом, автомобилем-роботом, скоростью вращения вала двигателя, гибридным двигателем автомобиля, электропечью, турбогенератором, сварочным аппаратом, пневмоцилиндром, системы управления вооружением легкобронированных машин, моделью перевернутого маятника.
Моде́ль биологи́ческого нейро́на — математическое описание свойств нейронов, целью которого является точное моделирование процессов, протекающих в таких нервных клетках. В отличие от подобного точного моделирования, при создании сетей из искусственных нейронов обычно преследуются цели повышения эффективности вычислений.
Временная область — анализ математических функций, физических сигналов или временных рядов в экономике или статистике охраны окружающей среды относительно времени. Во временной области значения сигнала или функции известное для всех действительных чисел в случае непрерывного времени, или в разные отдельные моменты в случае дискретного времени. Инструментом, который обычно используется для визуализации реальных сигналов во временной области, является осциллограф. График временной области показывает, как сигнал изменяется во времени, тогда как график частотной области показывает, насколько много сигнала лежит в пределах каждой заданной частотной полосы в диапазоне частот.
В нейробиологии, синхронизацией называют динамический режим, который характеризуется периодической одновременной активацией определенной популяции нейронов, или синхронизацию между локальными колебаниями двух или нескольких популяций нейронов.
Моде́ль ФитцХью́ — Нагу́мо — математическая модель, названая в честь Ричарда ФитцХью (1922—2007), в 1961 году опубликовавшего соответствующую систему дифференциальных уравнений под названием модель Бонхёффера — ван дер Поля, и Д. Нагумо (1926—1999), в следующем году предложившего аналогичную систему уравнений.
Анализ независимых компонент, называемый также Метод независимых компонент (МНК) — это вычислительный метод в обработке сигналов для разделения многомерного сигнала на аддитивные подкомпоненты. Этот метод применяется при предположении, что подкомпоненты являются негауссовыми сигналами и что они статистически независимы друг от друга. АНК является специальным случаем слепого разделения сигнала. Типичным примером приложения является задача вечеринки с коктейлем — когда люди на шумной вечеринке выделяют голос собеседника, несмотря на громкую музыку и шум людей в помещении: мозг способен фильтровать звуки и сосредотачиваться на одном источнике в реальном времени.