Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника, вне его или совпадать с вершиной. Ортоцентр относится к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга как точка X(4).
Поляра точки P относительно невырожденной кривой второго порядка — множество точек N, гармонически сопряжённых с точкой P относительно точек M1 и M2 пересечения кривой второго порядка секущими, проходящими через точку P.
Теорема Наполеона — утверждение евклидовой планиметрии о равносторонних треугольниках:
Если на каждой стороне произвольного треугольника построить по равностороннему треугольнику, то треугольник с вершинами в центрах равносторонних треугольников — тоже равносторонний
Треугольник Кеплера — это прямоугольный треугольник, длины сторон которого составляют геометрическую прогрессию. При этом соотношение длин сторон треугольника Кеплера связано с золотым сечением
Набор окружностей Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей. Если любые две окружности не пересекаются они имеют лишь одну общую точку — H, и в этом случае считается, что H является и их попарной точкой пересечения также. Если же окружности совпадают, принимается за попарную точку пересечения точка, диаметрально противоположная точке H. Три точки попарных пересечений окружностей Джонсона образуют опорный треугольник Δ ABC фигуры. Конфигурация названа именем Роджера Артура Джонсона.
Центр окружности девяти точек — одна из замечательных точек треугольника. Её часто обозначают как .
Центр Шпикера — замечательная точка треугольника, определяемая как центр масс периметра треугольника; то есть центр тяжести однородной проволоки, проходящей по периметру треугольника.
Энциклопедия центров треугольника — размещённая в сети база данных, содержащая более 32 тыс. «центров треугольника» — примечательных точек, связанных с геометрией треугольника. Поддерживается профессором математики университета Эвансвилла Кларком Кимберлингом.
Золотой треугольник — это равнобедренный треугольник, в котором две боковые (равные) стороны находятся в золотой пропорции с основанием:
В планиметрии внешняя и внутренняя точки Вектена — точки, которые строятся на основе данного треугольника аналогично первой и второй точкам Наполеона. Однако для построения выбираются центры не равносторонних треугольников, а квадратов, построенных на сторонах данного треугольника.
В математике таблица Витхоффа — бесконечная целочисленная матрица, полученная из последовательности Фибоначчи и названная в честь голландского математика Виллема Абрахама Витхоффа. Была определена математиком Моррисоном в 1980 году на основе пар Витхоффа, координат выигрышных позиций в игре Витхоффа; может также быть определена с помощью чисел Фибоначчи и теоремы Цекендорфа или непосредственно через золотое сечение и рекуррентное соотношение, определяющее числа Фибоначчи. Каждое положительное целое число встречается в таблице ровно один раз, и путём сдвига строк таблицы можно получить любую целочисленную последовательность, определяемую рекуррентным соотношением Фибоначчи.
Центральные прямые — это некоторые специальные прямые, связанные с треугольником и лежащие в плоскости треугольника. Особое свойство, которое отличает прямые как центральные прямые, проявляется через уравнение прямой в трилинейных координатах. Это особое свойство также связано с понятием центр треугольника. Понятие центральной прямой было введено Кларком Кимберлингом в статье, опубликованной в 1994 году.
Трилинейные поляры треугольника — некоторые специальные виды прямой линии, связанные с плоскостью треугольника и лежащие в плоскости треугольника. Трилинейная поляра точки Y (полюса) относительно невырожденного треугольника это — прямая линия, определяемая следующим построением. Если продолжить стороны чевианного треугольника некоторой точки и взять их точки пересечения с соответствующими сторонами, то полученные точки пересечения будут лежать на одной прямой, называемой трилинейной исходной точки . Здесь чевианный треугольник — треугольник, тремя вершинами которого являются три основания чевиан исходного треугольника.
Точка Штейнера — одна из замечательных точек треугольника и она обозначается как точка X(99) в энциклопедии центров треугольника Кларка Кимберлинга.
В планиметрии окружность Ламуна — это специальная окружность, которую можно построить в любом треугольнике . Она содержит центры описанных окружностей шести треугольников, на которые треугольник разрезают три его медианы. Пусть для определенности , , — 3 вершины треугольника , и пусть — его центроид. Пусть , и — середины сторон , и соответственно. Тогда центры шести описанных окружностей шести треугольников, на которые треугольник разбивается медианами: , , , , и , лежат на общей окружности, которая называется окружностью Ламуна.
Теорема Косниты — это свойство некоторых окружностей, связанных с произвольным треугольником.
Треугольник Фибоначчи или треугольник Хосоя — это треугольник, составленный из чисел на основе чисел Фибоначчи. Каждое число является суммой двух чисел выше по левой или правой диагонали. Первые несколько строк треугольника:
1
1 1
2 1 2
3 2 2 3
5 3 4 3 5
8 5 6 6 5 8
13 8 10 9 10 8 13
21 13 16 15 15 16 13 21
34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55
89 55 68 63 65 64 65 63 68 55 89
144 89 110 102 105 104 104 105 102 110 89 144
И т. д.
Точка Фейербаха — точка касания вписанной окружности к окружности девяти точек треугольника. Точка Фейербаха является касательной точкой треугольника, что означает то, что её определение не зависит от расположения и размеров треугольника. Точка внесена с кодом X(11) в энциклопедию центров треугольника Кларка Кимберлинга и названа именем Карла Вильгельма Фейербаха.