Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов, поэтому изначальная форма теории известна как наивная теория множеств. В XX веке теория получила существенное методологическое развитие, были созданы несколько вариантов аксиоматической теории множеств, обеспечивающие универсальный математический инструментарий, в связи с вопросами измеримости множеств тщательно разработана дескриптивная теория множеств.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Теория топосов — раздел теории категорий, изучающий топосы — категории с определёнными дополнительными структурами, и математические (категорные) методы, связанные с топосами.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Декартово замкнутая категория — категория, допускающая каррирование, то есть содержащая для каждого класса морфизмов некоторый объект , представляющий его. Декартово замкнутые категории занимают в некотором смысле промежуточное положение между абстрактными категориями и множествами, так как позволяют корректно оперировать с функциями, но не позволяют, к примеру, оперировать с подобъектами.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
Уравнитель в теории категорий — обобщение понятия решения некоторого уравнения, то есть множества, на котором данные отображения совпадают.
Преде́л в теории категорий — понятие, обобщающее свойства таких конструкций, как произведение, декартов квадрат и обратный предел. Двойственное понятие копредела обобщает свойства таких конструкций, как дизъюнктное объединение, копроизведение, кодекартов квадрат и прямой предел.
Элемента́рный то́пос — категория, в некотором смысле похожая на категорию множеств, основной предмет изучения теории топосов. Средствами элементарных топосов может быть описана аксиоматика как самой теории множеств, так и альтернативных теорий и логик, например, интуиционистская логика.
Расслоённое произведение — теоретико-категорное понятие, определяемое как предел диаграммы, состоящей из двух морфизмов: . Расслоённое произведение часто обозначают как .
Кодекартов квадрат — теоретико-категорное понятие, двойственное понятию декартова квадрата. Кодекартов квадрат является частным случаем копредела.
В теории категорий подобъект — это, грубо говоря, объект, который содержится в другом объекте категории. Определение обобщает более старые понятия подмножества в теории множеств и подгруппы в теории групп. Поскольку «настоящее» строение объектов в теории категорий не рассматривается, определение опирается на использование морфизмов, а не «элементов».
Катего́рия мно́жеств — категория, объекты которой — множества, а морфизмы между множествами A и B — все функции из A в B. Обозначается Set. В аксиоматике Цермело — Френкеля «множества всех множеств» не существует, а работать с понятием класса не очень удобно; для этой проблемы было предложено несколько различных решений.
Категория топологических пространств — категория, объекты которой — топологические пространства, а морфизмы — непрерывные отображения, основной объект изучения категорной топологии. Стандартное обозначение — . Является конкретной категорией, поэтому её объекты можно понимать как множества с дополнительной структурой.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.
Топология Гротендика — структура на категории, которая делает её объекты похожими на открытые множества топологического пространства. Категория вместе с топологией Гротендика называется ситусом или сайтом.
Когомологии пучков — это результат использования гомологической алгебры для исследования глобальных сечений пучков. Грубо говоря, когомологии пучков описывают препятствия к глобальному решению геометрической проблемы, когда она может быть решена локально.