В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Сепара́бельное пространство — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Функция Дирихле́ — функция, принимающая единицу на рациональных значениях и ноль — на иррациональных, стандартный пример всюду разрывной функции. Введена в 1829 году немецким математиком Дирихле.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
Гладкая функция, или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
Числовая последовательность — это последовательность чисел.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
В математике сходи́мость означает существование конечного предела у числовой последовательности, суммы бесконечного ряда, значения у несобственного интеграла, значения у бесконечного произведения. Соответственно, расходи́мость — отсутствие конечного предела.
В математике, поточечная сходимость последовательности функций на множестве — это вид сходимости, при котором каждой точке данного множества ставится в соответствие предел последовательности значений элементов последовательности в этой же точке.
Задача классифика́ции — задача, в которой множество объектов (ситуаций) необходимо разделить некоторым образом на классы, при этом задано конечное множество объектов, для которых известно, к каким классам они относятся (выборка), но классовая принадлежность остальных объектов неизвестна. Для решения задачи требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества, то есть указать, к какому классу он относится.
Бесконечно малая — числовая функция или последовательность, предел которой равен нулю.
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
Тео́рия алгори́тмов — раздел математики, изучающий общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов образует теоретическую основу вычислительных наук, теории передачи информации, информатики, телекоммуникационных систем и других областей науки и техники.
Гладкий инфинитезимальный анализ — это математически строгое переформулирование анализа в терминах инфинитезималей. Будучи основанным на идеях Уильяма Ловера и используя методы теории категорий, он рассматривает все функции как непрерывные и невыражаемые через дискретные элементы. Как теория это раздел синтетической дифференциальной геометрии.
Мажоранта — термин, который используется в математике для обозначения нескольких понятий, обобщающих понятие супремума или точной верхней грани. Наиболее часто применяется при доказательстве сходимости интегралов и рядов.
Функция, имеющая первообразную — функция, которая может быть получена в результате дифференцирования некоторой функции. Обычно термин употребляется по отношению к вещественнозначным функциям одного вещественного переменного, определённых на промежутке. Именно о таких функциях пойдёт речь далее в статье.