Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Сфе́ра Ри́мана — наглядное изображение множества в виде сферы, подобно тому, как множество действительных чисел изображают в виде прямой и как множество комплексных чисел изображает в виде плоскости. По этой причине термин «сфера Римана» часто используется как синоним к термину «множество комплексных чисел, дополненных бесконечно удалённой точкой», наряду с термином «расширенная комплексная плоскость».
Контактная структура — структура на гладком многообразии нечётной размерности , состоящая из гладкого поля касательных гиперплоскостей, удовлетворяющих формулируемому ниже условию невырожденности. Такая структура всегда существует на многообразии контактных элементов многообразия. Контактная структура тесно связана с симплектической и является её аналогом для нечётномерных многообразий.
Случа́йный проце́сс в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.
Усто́йчивое распределе́ние в теории вероятностей — это такое распределение, которое может быть получено как предел по распределению сумм независимых случайных величин.
Тензор Риччи, названный в честь итальянского математика Грегорио Риччи-Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи, точно так же как метрический тензор, является симметричной билинейной формой на касательном пространстве риманова многообразия. Грубо говоря, тензор Риччи измеряет деформацию объёма, то есть степень отличия n-мерных областей n-мерного многообразия от аналогичных областей евклидова пространства (см. геометрический смысл тензора Риччи). Обычно обозначается или .
Класс Тодда — это некоторая конструкция, которая ныне считается частью теории характеристических классов в алгебраической топологии. Класс Тодда векторного расслоения можно определить посредством теории классов Чженя и они встречаются там, где классы Чженя существуют — в первую очередь в дифференциальной топологии, теории комплексных многообразий и алгебраической геометрии. Грубо говоря, класс Тодда действует противоположно классу Чженя и относится к нему как конормальное расслоение относится к нормальному расслоению.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
В математике, топологическая K-теория является подразделом алгебраической топологии. В начале своего существования она применялась для изучения векторных расслоений на топологических пространствах с помощью идей, признанных в настоящее время частью (общей) K-теории, введенной Александром Гротендиком. Ранние работы по топологической K-теории принадлежат Майклу Атья и Фридриху Хирцебруху.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.