Недетерминированная машина Тьюринга (НМТ) — машина Тьюринга, функция перехода которой представляет собой недетерминированный конечный автомат (НКА).
NP-полная задача — в теории алгоритмов задача с ответом «да» или «нет» из класса NP, к которой можно свести любую другую задачу из этого класса за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «типовых» задач в классе NP: если для какой-то из них будет найден «полиномиально быстрый» алгоритм решения, то и любую другую задачу из класса NP можно будет решить так же «быстро».
В теории алгоритмов классом P называют множество задач, для которых существуют «быстрые» алгоритмы решения. Класс P включён в более широкие классы сложности алгоритмов.
В теории алгоритмов классом NP называют множество задач разрешимости, решение которых возможно проверить на машине Тьюринга за время, не превосходящее значения некоторого многочлена от размера входных данных, при наличии некоторых дополнительных сведений.
Класс сложности PH — объединение всех классов сложности из полиномиальной иерархии:
В теории алгоритмов классами сложности называются множества вычислительных задач, примерно одинаковых по сложности вычисления. Говоря более узко, классы сложности — это множества предикатов, использующих для вычисления примерно одинаковые количества ресурсов.
Задача о рюкзаке — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Задача об упаковке в контейнеры — NP-трудная комбинаторная задача. Задача заключается в упаковке объектов предопределённой формы в конечное число контейнеров предопределённой формы таким способом, чтобы число использованных контейнеров было наименьшим или количество или объём объектов были наибольшими.
В теории алгоритмов часто рассматривается класс, тесно связанный с P и NP, — класс дополнений языков из NP, называемый co-NP.
Класс сложности PSPACE — набор всех проблем разрешимости в теории сложности вычислений, которые могут быть разрешены машиной Тьюринга с полиномиальным ограничением пространства.
В теории сложности, PP является классом проблем, решаемых вероятностными машинами Тьюринга за полиномиальное время, с вероятностью ошибки менее 1/2. Аббревиатура PP обозначает «вероятностный полиномиальный по времени».
В теории вычислительной сложности ZPP — это класс задач с ответом «Да» либо «Нет», для которых существует вероятностная машина Тьюринга, удовлетворяющая следующим свойствам:
- Она всегда правильно отвечает «Да» либо «Нет».
- Математическое ожидание времени работы данной машины Тьюринга полиномиально.
В теории сложности полиномиальная иерархия — это иерархия классов сложности, которая обобщает классы P, NP, co-NP до вычислений с оракулом.
В информатике временна́я сложность алгоритма определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая учитывает только слагаемое самого высокого порядка, а также не учитывает константные множители, то есть коэффициенты. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, то есть при стремлении размера входа к бесконечности. Например, если существует число , такое, что время работы алгоритма для всех входов длины не превосходит , то временную сложность данного алгоритма можно асимптотически оценить как .
Тео́рия алгори́тмов — раздел математики, изучающий общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов образует теоретическую основу вычислительных наук, теории передачи информации, информатики, телекоммуникационных систем и других областей науки и техники.
Теория сложности вычислений — подраздел теоретической информатики, занимающейся исследованием сложности алгоритмов для решения задач на основе формально определённых моделей вычислительных устройств. Сложность алгоритмов измеряется необходимыми ресурсами, в основном это продолжительность вычислений или необходимый объём памяти. В отдельных случаях исследуются другие степени сложности, такие как размер микросхем, или количество процессоров, необходимая для работы параллельных алгоритмов.
В теории вычислительной сложности сложность алгоритма в среднем — это количество неких вычислительных ресурсов, требуемое для работы алгоритма, усреднённое по всем возможным входным данным. Понятие часто противопоставляется сложности в худшем случае, где рассматривается максимальная сложность алгоритма по всем входным данным.
Квантовая теория сложности — часть теории сложности вычислений в теоретической информатике. Изучает классы сложности, определённые с использованием квантовых компьютеров и квантовой информации, а также проблемы, связанные с этими классами сложности, и связи между классами квантовой сложности и классическими (неквантовыми) классами сложности.