Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. На языке КТП основываются физика высоких энергий и физика элементарных частиц, её математический аппарат используется в физике конденсированного состояния. КТП в виде Стандартной модели в настоящее время является единственной экспериментально подтверждённой теорией, способной описывать и предсказывать результаты экспериментов при достижимых в современных ускорителях высоких энергиях.
Арифме́тика — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа и его свойства. В арифметике рассматриваются измерения, вычислительные операции и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика уделяет внимание определению и анализу понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является древнейшей и одной из основных математических наук; она тесно связана с алгеброй, геометрией и теорией чисел.
Факториза́цией натурального числа называется его разложение в произведение простых множителей. Существование и единственность такого разложения следует из основной теоремы арифметики.
Проекти́вная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Симметрическая группа — группа всех перестановок заданного множества относительно операции композиции.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Неорганические сульфиды (от лат. sulphur — сера) — класс химических соединений, представляющих собой соединения металлов (а также ряда неметаллов — В, Si, Р, As) с серой (S), где она имеет степень окисления −2. Могут рассматриваться как соли сероводородной кислоты H2S. Свойства сульфидов сильно зависят от металлов, входящих в их состав.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
Теория Калуцы — Клейна — одна из многомерных теорий гравитации, позволяющая объединить два фундаментальных физических взаимодействия: гравитацию и электромагнетизм. Теория была впервые опубликована в 1921 году немецким математиком Теодором Калуцей, который расширил пространство Минковского до 5-мерного пространства и получил из уравнений своей теории уравнения общей теории относительности и классические уравнения Максвелла. Обоснование ненаблюдаемости пятого измерения было предложено шведским физиком Оскаром Клейном в 1926 году.
Дискре́тное логарифми́рование (DLOG) — задача обращения функции в некоторой конечной мультипликативной группе .
Область определения — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено.
Диэдральная группа — группа симметрии правильного многоугольника, включающая как вращения, так и осевые симметрии. Диэдральные группы являются простейшими примерами конечных групп и играют важную роль в теории групп, геометрии и химии. Хорошо известно и совершенно тривиально проверяется, что группа, образованная двумя инволюциями с конечным числом элементов в области определения является диэдральной группой.
Алгебраическое числовое поле, поле алгебраических чисел — это конечное расширение поля рациональных чисел . Таким образом, числовое поле — это поле, содержащее и являющееся конечномерным векторным пространством над ним. При этом некоторые авторы называют числовым полем любое подполе комплексных чисел — например, М. М. Постников в «Теории Галуа».
Группа комплексных отражений — конечная группа, действующая на конечномерном комплексном векторном пространстве определённым образом.