Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной. Если граничная ломаная не имеет точек самопересечения, многоугольник называется простым. Например, треугольники и квадраты — простые многоугольники, а пентаграмма — нет.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
Биссектри́са угла — луч, исходящий из вершины угла и делящий этот угол на два равных угла. Можно также определить биссектрису как геометрическое место точек внутри угла, равноудалённых от сторон этого угла.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону . В зависимости от типа треугольника высота может содержаться внутри треугольника, совпадать с его стороной или проходить вне треугольника у тупоугольного треугольника.
Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка пересечения серединных перпендикуляров к сторонам многоугольника.
Точка Нагеля — точка пересечения отрезков, соединяющих вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями.
Медиа́на треуго́льника ― отрезок в треугольнике, соединяющий вершину треугольника с серединой стороны, противоположной этой вершине. Иногда медианой называют также прямую, содержащую этот отрезок, а иногда длину этого отрезка. Точка пересечения медианы со стороной треугольника называется основанием медианы.
Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.
Правильный треугольник — треугольник, все стороны которого равны между собой, как следствие, все углы также равны и составляют 60°; дважды равнобедренный треугольник; правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Символ Шлефли — .
Равнобедренный треугольник — треугольник, в котором две стороны имеют равную длину. Боковыми называются равные стороны, а третья сторона — основанием. Каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Замечательные точки треугольника — точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.
Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Полупериметр многоугольника — это половина его периметра. Хотя полупериметр является очень простой производной периметра, он столь часто появляется в формулах для треугольников и других геометрических фигур, что ему выделили отдельное наименование. Если полупериметр оказывается в какой-либо формуле, его, обычно, обозначают буквой p.
Центр Шпикера — замечательная точка треугольника, определяемая как центр масс периметра треугольника; то есть центр тяжести однородной проволоки, проходящей по периметру треугольника.
Замечательные прямые треугольника — прямые, местоположение которых однозначно определяется треугольником. Местоположение некоторых не зависит от того, в каком порядке берутся стороны и вершины треугольника. Местоположение же большинства зависит от того, в каком порядке берутся стороны и вершины треугольника.
Трилинейные поляры треугольника — некоторые специальные виды прямой линии, связанные с плоскостью треугольника и лежащие в плоскости треугольника. Трилинейная поляра точки Y (полюса) относительно невырожденного треугольника это — прямая линия, определяемая следующим построением. Если продолжить стороны чевианного треугольника некоторой точки и взять их точки пересечения с соответствующими сторонами, то полученные точки пересечения будут лежать на одной прямой, называемой трилинейной исходной точки . Здесь чевианный треугольник — треугольник, тремя вершинами которого являются три основания чевиан исходного треугольника.
Важной составной частью геометрии треугольника является теория фигур и кривых, вписанных в треугольник или описанных около него — окружностей, эллипсов и других.