Кобальт-60
Кобальт-60 | |||||
---|---|---|---|---|---|
Название, символ | Кобальт-60, 60Co | ||||
Альтернативные названия | радиокобальт | ||||
Нейтронов | 33 | ||||
Свойства нуклида | |||||
Атомная масса | 59,9338171(7)[1] а. е. м. | ||||
Дефект массы | −61 649,0(6)[1] кэВ | ||||
Удельная энергия связи (на нуклон) | 8 746,745(10)[1] кэВ | ||||
Период полураспада | 5,2713(8)[2] года | ||||
Продукты распада | 60Ni | ||||
Родительские изотопы | 60Fe | ||||
Спин и чётность ядра | 5+[2] | ||||
| |||||
Таблица нуклидов | |||||
Медиафайлы на Викискладе |
Ко́бальт-60, радиоко́бальт — радиоактивный нуклид химического элемента кобальта с атомным номером 27 и массовым числом 60. В природе практически не встречается из-за малого периода полураспада. Открыт в конце 1930-х годов Г. Сиборгом и Дж. Ливингудом в Калифорнийском университете в Беркли[3].
Активность одного грамма этого нуклида составляет приблизительно 41,8 ТБк.
Кобальт-60 является наиболее долгоживущим из радиоактивных изотопов кобальта, имеет важные практические применения.
Образование и распад
Кобальт-60 является дочерним продуктом β−-распада нуклида 60Fe (период полураспада составляет 2,6⋅106 лет[2]):
Кобальт-60 также претерпевает бета-распад (период полураспада 5,2713 года), в результате которого образуется стабильный изотоп никеля 60Ni:
Основное состояние ядра 60Co имеет спин и чётность Jπ = 5+, а основное состояние дочернего ядра 60Ni имеет Jπ = 0+. Поэтому бета-распад в основное состояние очень сильно подавлен в связи с большим изменением спина, которое потребовалось бы для такого перехода. Бета-распады 60Co происходят лишь в возбуждённые состояния 60Ni, имеющие большой спин: 1,332 МэВ (2+), 2,158 МэВ (2+) и 2,505 МэВ (4+).
Наиболее вероятным является испускание электрона и антинейтрино с суммарной энергией 0,318 МэВ, 1,491 МэВ или 0,665 МэВ (в последнем случае вероятность составляет всего лишь 0,022 %)[4]. После их испускания нуклид 60Ni сразу находится, как правило, на одном из трёх энергетических уровней с энергиями 1,332, 2,158 и 2,505 МэВ (в зависимости от того, какую энергию унесла пара электрон/антинейтрино), а затем переходит в основное состояние, испуская гамма-кванты (3 уровня дают в комбинации 6 возможных энергий гамма-излучения) или передавая энергию конверсионным электронам. Наиболее вероятным является каскадное испускание гамма-квантов с энергией 1,1732 МэВ и 1,3325 МэВ. Полная энергия распада кобальта-60 составляет 2,823 МэВ.
Изомеры
Известен единственный изомер 60mCo со следующими характеристиками[2]:
- Избыток массы: −61 590,4(6) кэВ;
- Энергия возбуждения: 58,59(1) кэВ;
- Период полураспада: 10,467(6) мин;
- Спин и чётность ядра: 2+.
Распад изомерного состояния происходит по следующим каналам:
- изомерный переход в основное состояние (вероятность ~100 %);
- β−-распад (вероятность 0,24(3) %) в никель-60.
Получение
Кобальт-60 получают искусственно, подвергая единственный стабильный изотоп кобальта 59Co бомбардировке тепловыми нейтронами (в ядерном реакторе или с помощью нейтронного генератора). Наиболее рентабельным является производство кобальта-60 на реакторах РБМК, так как в этом случае не требуется никакого дополнительного оборудования или мероприятий, а просто вместо штатных дополнительных поглотителей с карбидом бора устанавливаются сроком на 5 лет кобальтовые поглотители, включающие 1152 таблетки никелированного природного кобальта-59.[5][6]
Применение
Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для[7]:
- стерилизации пищевых продуктов, медицинских инструментов и материалов;
- обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
- радиационной модификации свойств полимеров и изделий из них;
- радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
- дистанционной и внутриполостной гамма-терапии;
- гамма-дефектоскопии;
- определения консистенции (плотности) перекачиваемых по трубопроводам жидких смесей в составе приборов-консистометров (измерителей плотности)[8];
- в системах контроля уровня металла в кристаллизаторе при непрерывной разливке стали.
Является одним из изотопов, применяющихся в радиоизотопных источниках энергии (РИТЭГах и т. п.).
Кобальт-60 в культуре
- В фильме «Город страха» (1959) сюжет развёртывается вокруг похищения контейнера с кобальтом-60 в количестве, достаточном для уничтожения всего населения Лос-Анджелеса.
- Французская пост-индастриал группа «Cobalt 60» названа в честь данного изотопа.
- Реактор на кобальте-60 (хотя ядерный реактор, работающий на этом изотопе, в принципе невозможен, поскольку кобальт-60 не является делящимся изотопом, как и широко известные рутений-106, цезий-137 и стронций-90) служил объектом религиозного поклонения в романе «Всемогущий атом» американского писателя-фантаста Роберта Силверберга.
- У компании DC Comics есть комикс «Кобальт-60» (первый выпуск — 1968) с одноимённым главным героем. Он носит маску и хочет отомстить своему врагу по имени Стронций-90. По его мотивам и под таким же названием снимается фильм Зака Снайдера.
- В сериале «Касл» (3 сезон, 16-17 серии) главные герои подверглись облучению кобальта-60 и предотвратили взрыв бомбы с ним. Под угрозой находился Нью-Йорк.
- В сериале «9-1-1» (3 сезон, 9 серия) главные герои устраняли последствия аварии с участием грузовика, незаконно перевозившего кобальт-60.
- В видеоигре «Detroit: Become Human» кобальт-60 мог быть использован в качестве «грязной бомбы».
- В серии романов Виктора Пелевина "Transhumanism Inc." присутствовал "Кобальтовый гейзер", являвшийся оружием Судного дня для уничтожения жизни на Земле в случае падения государства Сердоболов.
См. также
- Радиационная авария в бухте Чажма
- Проект «Тайга»
- Изотопы кобальта
- Радиологическое оружие
- Кобальтовая бомба
Примечания
- ↑ 1 2 3 4 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — .
- ↑ 1 2 3 4 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — .
- ↑ U. S. environmental protection agency. Who discovered cobalt and cobalt-60? (англ.) (9 февраля 2009). Дата обращения: 28 августа 2010. Архивировано 8 мая 2012 года.
- ↑ WWW Table of Radioactive Isotopes (англ.). — Энергетические уровни 60Co. Дата обращения: 28 августа 2010. Архивировано 8 мая 2012 года.
- ↑ гл. ред. П. А. Яковлев : На третьем энергоблоке Смоленской АЭС впервые приступили к производству промышленного радиоизотопа кобальта . Атомная энергия 2.0 С. 95807. Росатом (1 июля 2019). Дата обращения: 26 мая 2022. Архивировано 26 мая 2022 года.
- ↑ гл. ред. П. А. Яковлев : Росэнергоатом начал наработку уникального изотопа кобальта-60 на третьем энергоблоке Курской АЭС . Атомная энергия 2.0 С. 125070. Росатом (26 мая 2022). Дата обращения: 26 мая 2022. Архивировано 26 мая 2022 года.
- ↑ Радиационные технологии на Ленинградской атомной станции. — Раздел: производство изотопа кобальта-60. Дата обращения: 28 августа 2010. Архивировано из оригинала 30 июля 2009 года.
- ↑ http://dp.vniims.ru/TSI/899008F5ABA99A434.pdf (недоступная ссылка)