Пространство Кала́би — Яу — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль. В теории суперструн иногда предполагают, что дополнительные измерения пространства-времени принимают форму 6-мерного многообразия Калаби — Яу, что привело к идее зеркальной симметрии. Название было придумано в 1985 году, в честь Эудженио Калаби, который впервые предположил, что такие размерности могут существовать, и Яу Шинтуна, который в 1978 году доказал гипотезу Калаби.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Когомологии де Рама — теория когомологий, основанная на дифференциальных формах, и применяемая в теориях гладких и алгебраических многообразий.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Кру́чение аффи́нной свя́зности — одна из геометрических характеристик связностей в дифференциальной геометрии. В отличие от понятия кривизны, имеющего смысл для связности в произвольном векторном расслоении или даже связности Эресманна в локально тривиальном расслоении, кручение может быть определено лишь для связностей в касательном расслоении.
Теория Ходжа занимается изучением дифференциальных форм на гладких многообразиях. Более конкретно, эта теория изучает, каким образом обобщённый лапласиан, ассоциированный с римановой метрикой на многообразии M, влияет на его группы когомологий с вещественными коэффициентами.
Теорема Коши — Пуанкаре является обобщением на случай многомерного комплексного пространства интегральной теоремы Коши. Была доказана А. Пуанкаре в 1886 г.
Кэлерово многообразие — многообразие с тремя взаимно совместимыми структурами: комплексной структурой, римановой метрикой и симплектической формой.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
С расслоением, слои которого являются гладкими многообразиями, можно связать некоторое расслоение с плоской связностью, называемой свя́зностью Га́усса — Ма́нина.
K3-поверхность — связная односвязная компактная комплексная поверхность, допускающая нигде не вырожденную голоморфную дифференциальную форму степени два. В алгебраической геометрии, где рассматриваются многообразия над полями иными, нежели комплексные числа, K3-поверхностью называется алгебраическая поверхность с тривиальным каноническим расслоением, не допускающая алгебраических 1-форм.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Теорема Богомолова о разложении описывает структуру кэлеровых многообразий с тривиальным каноническим расслоением. Справку о многообразиях такого типа можно найти в статье «Многообразие Калаби — Яу».
Квадратичным дифференциалом на многообразии называется сечение симметрического квадрата его кокасательного расслоения. Чаще всего это словосочетание используется в контексте комплексных многообразий, и молчаливо подразумевается, что это сечение является голоморфным. Чрезвычайную важность квадратичные дифференциалы имеют в теории комплексных кривых, или же римановых поверхностей.
Комплексная дифференциальная форма — дифференциальная форма с комплексными коэффициентами, обычно рассматривается на комплексных многообразиях.