Аминокисло́ты, также аминокарбо́новые кисло́ты, АМК — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O) и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот . Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.
Генети́ческий код — совокупность правил, согласно которым в живых клетках последовательность кодонов переводится в последовательность аминокислот (белков). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един, что свидетельствует о наличии общего предка.
Митохо́ндрия — двумембранная сферическая или эллипсоидная органелла диаметром обычно около 1 микрометра. Характерна для большинства эукариотических клеток, как автотрофов, так и гетеротрофов. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют. В специализированных клетках органов животных содержатся сотни и даже тысячи митохондрий.
Рибосо́ма — важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоят из большой и малой субъединиц. Малая субъединица считывает информацию с матричной РНК, а большая — присоединяет соответствующую аминокислоту к синтезируемой цепочке белка.
Ксенобиология — подраздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами. КБ описывает форму биологии, которая (пока) не знакома науке и не встречается в природе. На практике это обозначает новые биологические и биохимические системы, которые отличаются от канонической системы ДНК-РНК-20 аминокислот. Например, вместо ДНК или РНК, КБ исследует аналоги нуклеиновых кислот, называемые ксенонуклеиновые кислоты (КсНК) в качестве носителей информации. Она также исследует расширенный генетический код и включение не-протеиногенных аминокислот в белки.
Трансля́ция — осуществляемый рибосомой процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК ; реализация генетической информации.
Открытая рамка считывания — последовательность нуклеотидов в составе ДНК или РНК, потенциально способная кодировать белок. Основным признаком наличия ORF служит отсутствие стоп-кодонов на достаточно длинном участке последовательности после стартового кодона. Поскольку в некоторых случаях стартовый и терминирующие кодоны отличаются от канонических, а также ввиду возможности супрессии стоп-кодонов при трансляции у некоторых организмов, при определении рамки считывания применяются алгоритмы, которые учитывают эти различия.
Ма́тричная рибонуклеи́новая кислота́ — РНК, содержащая информацию о первичной структуре белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.
Селеноцистеи́н — 21-я протеиногенная аминокислота, аналог цистеина с заменой атома серы на атом селена. Входит в состав активного центра фермента глутатионпероксидазы, а также в состав селенопротеинов, деиодаз и некоторых других белков. На мРНК селеноцистеин кодируется терминирующим кодоном UGA при условии, что за ним следует особая стимулирующая последовательность нуклеотидов.
Пирролизин — нестандартная протеиногенная аминокислота, которая участвует в биосинтезе белка у ряда метаногенных архей. Был обнаружен в 2002 году на активном участке фермента метилтрансферазы, выделенной из метаногенной археи Methanosarcina barkeri, и является 22-й из найденных в природе аминокислот, которые входят в состав природных белков. В организме человека отсутствует.
Стоп-кодон или кодон терминации — тройка нуклеотидных остатков в мРНК, кодирующая прекращение (терминацию) синтеза полипептидной цепи (трансляции). Стандартные стоп-кодоны — УАА, УАГ и УГА.
Биомолекулы — это органические соединения, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Как правило, биомолекулы состоят из атомов углерода, водорода, азота, кислорода, фосфора и серы. Другие элементы входят в состав биологически значимых веществ значительно реже.
Нонсенс-мутация — точечная мутация в последовательности ДНК, которая приводит к появлению стоп-кодона, в результате чего происходит преждевременная терминация синтеза нужного белка. Обычно такой фрагмент не может выполнять функции изначально синтезируемого белка.
SECIS-элеме́нт — участок РНК длиной около 60 нуклеотидов, формирующий шпилькообразную структуру. Этот структурный мотив заставляет стоп-кодон UGA кодировать селеноцистеин. Поэтому элемент SECIS является неотъемлемым элементом мРНК, кодирующих селенопротеины.
Нетрансли́руемые о́бласти — особые участки мРНК, не выступающие в качестве матрицы для синтеза белка и прилегающие с обеих сторон к транслируемой области. Таких области две: 5'-нетранслируемая область, или 5'-НТО и 3'-нетранслируемая область, или 3'-НТО, располагающиеся на 5'- и 3'-конце мРНК соответственно. Такое же название имеют участки ДНК, соответствующие 5'-НТО и 3'-НТО транскрипта.
Коро́ткие откры́тые ра́мки счи́тывания — открытые рамки считывания, расположенные внутри 5′-нетранслируемой области (5'-UTR) эукариотических и некоторых вирусных мРНК. uORF участвуют в регуляции экспрессии генов у эукариот и вирусов и обычно подавляют трансляцию основной рамки считывания, хотя их действие может сопровождаться различными эффектами.
3′-Нетранслируемая область — некодирующий участок мРНК, располагающийся на её 3′-конце после кодирующей области. Такое же название имеет участок ДНК, соответствующий 3′-UTR транскрипта. 3′-UTR может принимать участие в регуляции эффективности трансляции, стабильности мРНК, содержать сигналы полиаденилирования и сайты связывания микроРНК, а также выполнять ряд других регуляторных функций.
Старт-кодон или инициаторный кодон — первый кодон матричной РНК, c которого начинается трансляция белка в рибосоме. У эукариот и архей старт-кодон всегда кодирует метионин, а у прокариот— модифицированный метионин (N-формилметионин). В большинстве случаев роль инициаторного кодона играет триплет AUG. Старт-кодону предшествует 5′-нетранслируемая область (5'-UTR). В 5'-UTR бактерий локализована последовательность Шайна — Дальгарно (AGGAGG), которая служит для связывания рибосомы и отделёна спейсером от старт-кодона.
Трансля́ция у прокарио́т — процесс синтеза белка на матрице мРНК, происходящий в клетках прокариотических организмов. В отличие от аналогичного процесса у эукариот, в трансляции у прокариот принимает участие рибосома 70S, а первой (инициаторной) аминокислотой выступает формилметионин, а не метионин.
N-формилметионин — производная аминокислоты метионина, с формильной группой присоединенной к аминной группе. Используется для инициации синтеза белка с генов бактерий, митохондрий и пластид. Часто удаляется из полипептидной цепи в процессе посттрансляционной модификации.