Те́ст Люка́ — Ле́мера — полиномиальный, детерминированный и безусловный тест простоты для чисел Мерсенна. Сформулирован Эдуардом Люка в 1878 году и доказан Лемером в 1930 году.
Циклический избыточный код — алгоритм нахождения контрольной суммы, предназначенный для проверки целостности данных. CRC является практическим приложением помехоустойчивого кодирования, основанным на определённых математических свойствах циклического кода.
RSA — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших полупростых чисел.
Аналого-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код.
Хеш-функция, или функция свёртки — функция, осуществляющая преобразование массива входных данных произвольной длины в выходную битовую строку установленной длины, выполняемое определённым алгоритмом. Преобразование, производимое хеш-функцией, называется хешированием. Исходные данные называются входным массивом, «ключом» или «сообщением». Результат преобразования называется «хешем», «хеш-кодом», «хеш-суммой», «сводкой сообщения».
М-последовательность или последовательность максимальной длины — псевдослучайная двоичная последовательность, порожденная регистром сдвига с линейной обратной связью и имеющая максимальный период. М-последовательность является линейной рекуррентой над полем GF(2).
Пото́чный или Пото́ковый шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры.
Сигнал — материальное воплощение сообщения для использования при передаче, переработке и хранении информации.
Коды Голда — тип псевдослучайных последовательностей. Значимость этих последовательностей происходит из-за их очень низкой взаимной корреляции. Применяются в CDMA и GPS.
Алгоритм Адлемана — первый субэкспоненциальный алгоритм дискретного логарифмирования в кольце вычетов по модулю простого числа. Алгоритм был предложен Леонардом Максом Адлеманом в 1979 году. Леонард Макс Адлеман — американский учёный-теоретик в области компьютерных наук, профессор компьютерных наук и молекулярной биологии в Университете Южной Калифорнии. Он известен как соавтор системы шифрования RSA и ДНК-вычислений. RSA широко используется в приложениях компьютерной безопасности, включая протокол HTTPS.
Мультипликативная группа кольца вычетов по модулю m — мультипликативная группа обратимых элементов кольца вычетов по модулю m. При этом в качестве множества элементов может рассматриваться любая приведенная система вычетов по модулю m.
Регистр сдвига с линейной обратной связью — регистр сдвига битовых слов, у которого значение входного (вдвигаемого) бита равно линейной булевой функции от значений остальных битов регистра до сдвига. Может быть организован как программными, так и аппаратными средствами. Применяется для генерации псевдослучайных последовательностей битов, что находит применение, в частности, в криптографии.
Подпись при обучении с ошибками в кольце — один из классов криптосистем с открытым ключом, основанный на задаче обучения с ошибками в кольце, который заменяет используемые алгоритмы подписи RSA и ECDSA. В течение последнего десятилетия проводились активные исследования по созданию криптографических алгоритмов, которые остаются безопасными, даже если у злоумышленника есть ресурсы квантового компьютера. Подпись при обучении с ошибками в кольце относится к числу пост-квантовых подписей с наименьшим открытым ключом и размерами подписи. Использование общей проблемы обучения с ошибками в криптографии было введено Одедом Регевым в 2005 году и послужило источником нескольких криптографических разработок. Основоположники криптографии при обучении с ошибками в кольце, считают, что особенностью этих алгоритмов, основанных на обучении с ошибками, является доказуемое сокращение известных сложных задач. Данная подпись имеет доказуемое сокращение до задачи нахождения кратчайшего вектора в области криптографии на решётках. Это означает, что если можно обнаружить атаку на криптосистему RLWE, то целый класс предполагаемых сложных вычислительных проблем будет иметь решение. Первая подпись на основе RLWE была разработана Вадимом Любашевским и уточнена в 2011 году. Данная статья освещает фундаментальные математические основы RLWE и основана на схеме под названием GLYPH.