Проективное преобразование проективной плоскости — это преобразование, переводящее прямые в прямые.
Скаля́рное произведе́ние — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат. Используется в определении длины векторов и угла между ними.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов считается равным нулевому вектору.
Прямоуго́льная (декартова) систе́ма координа́т — прямолинейная система координат с взаимно перпендикулярными координатными осями на плоскости или в пространстве. Часто используемая система координат. Просто обобщается для пространств любой размерности.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Компланарность — свойство трёх векторов, которые, будучи приведёнными к общему началу, лежат в одной плоскости.
Ве́ктор — направленный отрезок, то есть отрезок, для которого указано, какая из его граничных точек начало, а какая — конец.
Метод опорных векторов — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как частный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Лине́йная опера́ция над векторами — операция сложения векторов либо операция умножения вектора на число. Иногда к этим двум операциям добавляют операцию вычитания векторов.
Умноже́ние ве́ктора на число́, или умноже́ние ве́ктора на скаля́р – операция, ставящая в соответствие вектору и числу — скаляру — другой коллинеарный вектор — произведение вектора на это число. При этом произведение вектора и числа в случае ненулевых вектора и числа — новый вектор, у которого:
- модуль равен произведению модуля исходного вектора на абсолютную величину числа;
- направление, совпадающее с направлением исходного вектора, если число положительно, и противоположное, если число отрицательно.
Произведе́ние векторо́в, или перемноже́ние векторо́в — операция, ставящая в соответствие двум векторам третий вектор — произведение векторов. Эта операция должна обладать двумя свойствами:
- подчиняться законам, аналогичным законам операции умножения чисел;
- обобщать геометрические и физические операции.