Изоморфи́зм — соотношение между математическими объектами, выражающее общность их строения; используется в разных разделах математики и в каждом из них определяется в зависимости от структурных свойств изучаемых объектов. Обычно изоморфизм определяется для множеств, наделённых некоторой структурой, например, для групп, колец, линейных пространств; в этом случае он определяется как обратимое отображение (биекция) между двумя множествами со структурой, сохраняющее эту структуру, то есть показывающее, что объекты «одинаково устроены» в смысле этой структуры. Если между объектами существует изоморфизм, то они называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких структур.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Изоморфизм групп — взаимно-однозначное соответствие между элементами двух групп, сохраняющее групповые операции. Если существует изоморфизм между двумя группами, группы называются изоморфными. С точки зрения теории групп изоморфные группы имеют одни и те же свойства и их можно не различать.
Сопряжённые функторы — пара функторов, состоящих в определённом соотношении между собой. Понятие сопряжённых функторов и сам термин были предложены Даниэлем Каном в 1956 году. Сопряжённые функторы часто встречаются в разных областях математики.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру. Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, потому что оно появляется в большинстве её приложений.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
Копроизведение семейства объектов — обобщение в теории категорий понятий дизъюнктного объединения множеств и топологических пространств и прямой суммы модулей или векторных пространств. Копроизведение семейства объектов — это «наиболее общий» объект, в который существует морфизм из каждого объекта семейства. Копроизведение объектов двойственно их произведению, то есть определение копроизведения можно получить из определения произведения обращением всех стрелок. Тем не менее, во многих категориях произведение и копроизведение объектов разительно отличаются.
Уравнитель в теории категорий — обобщение понятия решения некоторого уравнения, то есть множества, на котором данные отображения совпадают.
Во многих областях математики полезную конструкцию часто можно рассматривать как «наиболее эффективное решение» определенной проблемы. Определение универсального свойства использует язык теории категорий, чтобы сделать это определение точным и изучать его теоретическими методами.
Категория запятой — специальная теоретико-категорная конструкция, позволяющая изучать морфизмы не как соотнесения объектов категории друг с другом, а как самостоятельные объекты. Строится как особая категория для произвольной пары функторов в общую категорию, описана Ловером как обобщение категорий объектов и морфизмов. Название «категория запятой» появилось из-за первоначального обозначения Ловера; впоследствии стандартное обозначение изменилось из соображений удобства, но название для конструкции сохранилось.
В теории категорий симметричная моноидальная категория — это моноидальная категория, в которой операция тензорного произведения «настолько коммутативна, насколько это возможно». В симметричной моноидальной категории для любых объектов выбран изоморфизм , причём все эти изоморфизмы вместе образуют естественное семейство.
Производная категория D(A) абелевой категории A представляет собой конструкцию из гомологической алгебры, введённую для уточнения и в определённом смысле упрощения теории производных функторов, определённых на A. Конструкция определяется таким образом, что объектами D(A) становятся цепные комплексы объектов из A, причем два таких комплекса считаются изоморфными, когда существует гомоморфизм между этими комплексами, индуцирующий изоморфизм гомологий этих комплексов. Затем для цепных комплексов можно определить производные функторы, уточняя понятие гиперкогомологий. Определения приводят к существенному упрощению формул, в противном случае описываемых сложными спектральными последовательностями.
Триангулированная категория — это категория с «функтором сдвига» и с классом «выделенных треугольников», удовлетворяющими определённым аксиомам. Важными примерами триангулированных категорий являются производные категории абелевых категорий, а также стабильные гомотопические категории. Выделенные треугольники обобщают короткие точные последовательности в абелевых категориях, а также гомотопические последовательности расслоения или корасслоения в топологии.