Конвективная зона
Зона конвекции — область звезды (и в частности Солнца), в которой перенос энергии из внутренних районов во внешние происходит главным образом путём активного перемешивания вещества — конвекции.
Расположение и строение
На Солнце выше зоны конвекции расположена фотосфера, ниже — зона лучистого переноса. Наглядным аналогом процессов, происходящих в конвективной зоне, является подогрев воды в сосуде. Пламя нагревает нижние слои воды, и они в результате теплового расширения вытесняются вверх другими, холодными и более тяжёлыми слоями. Аналогичный процесс происходит и в Солнце, где источником энергии служит солнечное ядро с происходящими в нём термоядерными реакциями.
Движение вещества в конвективной зоне происходит не хаотично, а в виде устойчивых ячеек циркуляции шестигранной формы — по оси ячейки вещество поднимается, а у периферии опускается. Кроме того, по вертикали конвекция разбивается на слои, толщина которых близка к толщине «однородной атмосферы», где плотность меняется в e ≈ 2,7 раза. Поэтому размер ячеек меняется по мере движения к поверхности звезды. У основания конвективной зоны образуются гигантские ячейки размером около половины радиуса звезды, в промежуточных слоях их размер уменьшается, а в верхнем слое их размер составляет несколько сотен км. На поверхности Солнца видны следы всех слоёв ячеек, в виде гранул и более крупных структур (супергрануляция).
Скорость конвекции зависит от глубины. У основания конвективной зоны она мала (десятки м/c), под фотосферой она достигает значений 1-2 км/с.
Физические процессы в конвективной зоне
Движение вещества в конвективной зоне тесно связано с процессами ионизации и рекомбинации атомов водорода и гелия, и во многом обусловлено ими.
Конвективные зоны звёзд различной массы
Обычная конвективная зона
Солнце, а также звёзды главной последовательности, имеющие среднюю массу и близкий спектральный класс, обладают конвективной зоной, которая занимает приблизительно треть объёма звезды. Когда горячая плазма поднимается к верхней границе конвективной зоны, она охлаждается за счёт излучения энергии в фотосферу, остывает и погружается вглубь, где нагревается излучением лучистой зоны, после чего цикл повторяется. Поскольку зона ядерных реакций отделена от зоны перемешивания вещества зоной лучистого переноса, то гелий практически не выносится в поверхностные слои Солнца, а накапливается в его ядре.
Конвективная зона на Солнце и сходных звёздах представляет собой зону частично ионизованных водорода и гелия. Конвективная зона простирается до глубины, где водород и гелий полностью ионизованы. Чем ниже температура звезды, тем толще её конвективная зона, у холодных красных звёзд её толщина достигает половины радиуса. Наоборот, у более горячих звёзд спектрального класса А водород заметно ионизован уже на поверхности, поэтому уже на небольшой глубине и водород и гелий полностью ионизованы, следовательно толщина конвективной зоны у таких звёзд мала.
Ядерная конвективная зона
У массивных звёзд ранних спектральных классов (O и B) синтез гелия осуществляется не протон-протонным, а азотно-углеродным циклом. Скорость этой реакции очень сильно зависит от температуры, поэтому температура внутри ядра по мере движения к центру звезды очень быстро возрастает. Большой температурный градиент внутри ядра создаёт условия для формирования ещё одной, внутриядерной зоны конвекции, которая лежит под зоной лучистого переноса, и в которой происходит активное перемешивание массы вещества, участвующего в ядерных реакциях. Это приводит к равномерному выгоранию водорода по всему ядру, что существенно влияет на ход эволюции таких звёзд.
Звёзды без лучистой зоны
У звёзд главной последовательности, имеющих малую массу (менее 0,26 массы Солнца) — красных карликов, зона конвекции занимает весь объём звезды. Лучистая зона отсутствует и у молодых звёзд средней массы (до трёх масс Солнца), ещё не завершивших процесс гравитационного сжатия и находящихся на подходе к главной последовательности. У красных гигантов зона конвекции также простирается непосредственно до ядра.
Литература
- Конвекция / Пикельнер С.Б. // Физика космоса: Маленькая энциклопедия / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 313—315. — 783 с. — 70 000 экз.
Ссылки
- Martins, F.; Depagne, E.; Russeil, D.; Mahy, L. Evidence of quasi-chemically homogeneous evolution of massive stars up to solar metallicity (англ.) // Astronomy and Astrophysics : journal. — 2013. — Vol. 554. — P. A23. — doi:10.1051/0004-6361/201321282. — . — arXiv:1304.3337.
- Behrend, R.; Maeder, A. Formation of massive stars by growing accretion rate (англ.) // Astronomy and Astrophysics : journal. — 2001. — Vol. 373. — P. 190. — doi:10.1051/0004-6361:20010585. — . — arXiv:astro-ph/0105054.
- Reiners, A.; Basri, G. On the magnetic topology of partially and fully convective stars (англ.) // Astronomy and Astrophysics : journal. — 2009. — March (vol. 496, no. 3). — P. 787—790. — doi:10.1051/0004-6361:200811450. — . — arXiv:0901.1659.