Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.
Теоре́ма Менела́я, или теорема о трансверсалях, или теорема о полном четырёхстороннике, — классическая теорема аффинной геометрии.
Окружность девяти точек — это окружность, проходящая через середины всех трёх сторон треугольника.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
- ,
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой . В зависимости от вида треугольника ортоцентр может находиться внутри треугольника, вне его или совпадать с вершиной. Ортоцентр относится к замечательным точкам треугольника и перечислен в энциклопедии центров треугольника Кларка Кимберлинга как точка X(4).
Неархимедова геометрия — совокупность геометрических предложений, вытекающих из систематических групп аксиом: инцидентности, порядка, конгруэнтности и параллельности системы аксиоматики Гильберта евклидовой геометрии, и не связанных с аксиомами непрерывности . В узком смысле неархимедова геометрия описывает геометрические свойства прямой, на которой не верна аксиома Архимеда . Для исследования геометрических соотношений в неархимедовой геометрии вводится исчисление отрезков — неархимедова числовая система, рассматриваемая как специальная комплексная числовая система. Определяются понятия отрезка, отношения отрезков, сложение и умножение отрезков. В частности, вводится дезаргова числовая система — неархимедова система, в которой умножение отрезков некоммутативно. С помощью этих числовых систем в неархимедовой геометрии строится теория подобия фигур, теория площадей и т. д.
Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.
Ориента́ция — обобщение и формализация понятий направления обхода и направления на прямой на более сложные геометрические объекты, многообразия, векторные расслоения и так далее.
Аксиоматика Гильберта — система аксиом евклидовой геометрии. Разработана Гильбертом как более полная, нежели система аксиом Евклида.
Прямая Ньютона — прямая, соединяющая середины диагоналей четырёхугольника.
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой.
Замечательные точки треугольника — точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.
Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами.
Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
Теорема о равнобедренном треугольнике — классическая теорема геометрии, утверждающая, что углы, противолежащие боковым сторонам равнобедренного треугольника, равны. Эта теорема появляется как предложение 5 книги 1 «Начал» Евклида.
Метод площадей — метод решения геометрических тождеств путём подсчёта площадей фигур разными способами.
Признаки равенства треугольников — одна из основных теорем геометрии.