Чи́сла Фибона́ччи — элементы числовой последовательности:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …,
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Жорданова матрица — квадратная блочно-диагональная матрица над полем , с блоками вида
Разделённая ра́зность — обобщение понятия производной для дискретного набора точек.
Гессиан функции — симметрическая квадратичная форма, описывающая поведение функции во втором порядке.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Метод Гаусса — Жордана — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Ма́тричный метод решения систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.
S-параметры — элементы матрицы рассеяния многополюсника, описывающего обычно радиотехническое устройство.
В линейной алгебре, фробениусовой нормальной формой линейного оператора А называется каноническая форма его матрицы, соответствующая минимальному разложению линейного пространства в прямую сумму инвариантных относительно А подпространств, которые могут быть получены как линейная оболочка некоторого вектора и его образов под действием А. Она будет блочно-диагональной матрицей, состоящей из фробениусовых клеток вида
Теоре́ма Лапла́са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа, которому приписывают формулирование этой теоремы в 1772 году, хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Скалярная матрица — диагональная матрица, элементы главной диагонали которой равны. Частным случаем скалярной матрицы является единичная матрица.
Поворот Гивенса — в линейной алгебре линейный оператор поворота вектора на некоторый заданный угол.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
Циркулянт или циркулянтная матрица — это матрица вида
Матричный логарифм — матрица, для которой матричная экспонента равна исходной матрице — обобщение логарифма и в некотором смысле обратная функция матричной экспоненты. Не все матрицы имеют логарифм, но те матрицы, которые имеют логарифм, могут иметь более одного логарифма. Изучение логарифмов матриц приводит к теории Ли, так как если матрица имеет логарифм, то она является элементом группы Ли, а логарифм является соответствующим элементом векторного пространства алгебры Ли.