Конфигурация Клейна

Перейти к навигацииПерейти к поиску

Конфигурация Клейна — конфигурация, связанная с поверхностью Куммера[англ.], состоящей из 60 точек и 60 плоскостей, в которой каждая точка лежит на 15 плоскостях, а каждая плоскость проходит через 15 точек. Конфигурация использует 15 пар прямых 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 и их обратные (с переставленными цифрами). Ниже показаны 60 точек, полученные из троек пересекающихся прямых, образующих нечётные перестановки. Шестьдесят плоскостей — это тройки прямых, лежащих в одной плоскости и образующих чётные перестановки, полученные перестановкой последних двух цифр в точках. Для любой точки или плоскости существует 15 членов в другом множестве, содержащем эти 3 прямые[1].

12-34-6512-43-5621-34-5621-43-6512-35-4612-53-64
21-35-6421-53-4612-36-5412-63-4521-36-4521-63-54
13-24-5613-42-6531-24-6531-42-5613-25-6413-52-46
31-25-4631-52-6413-26-4513-62-5431-26-5431-62-45
14-23-6514-32-5641-23-5641-32-6514-25-3614-52-63
41-25-6341-52-3614-26-5314-62-3541-26-3541-62-53
15-23-4615-32-6451-23-6451-32-4615-24-6315-42-36
51-24-3651-42-6315-26-3415-62-4351-26-4351-62-34
16-23-5416-32-4561-23-4561-32-5416-24-3516-42-53
61-24-5361-42-3516-25-4316-52-3461-25-3461-52-43

Изучена Феликсом Клейном в 1870 году[2].

Примечания

Литература

  • Hudson R. W. H. T. §25. Klein's 6015 configuration // Kummer's quartic surface. — Cambridge University Press, 1990. — С. 42–44. — (Cambridge Mathematical Library). — ISBN 978-0-521-39790-2. Оригинальный год издания — 1905
  • Felix Klein. Zur Theorie der Liniencomplexe des ersten und zweiten Grades // Mathematische Annalen. — Springer Berlin / Heidelberg, 1870. — Т. 2. — С. 198–226. — ISSN 0025-5831. — doi:10.1007/BF01444020.