Аммиа́к (нитрид водорода, аммониа́к, химическая формула — NH3) — бинарное неорганическое химическое соединение, молекула которого состоит из одного атома азота и трёх атомов водорода.
Александр Абрамович Гринберг — советский химик, профессор (1932), академик АН СССР (1958), заслуженный деятель науки и техники РСФСР, лауреат Сталинской премии (1946), XV Менделеевский чтец.
В биологии активный центр — это область фермента, где молекулы субстрата связываются и подвергаются химической реакции. Активный центр состоит из аминокислотных остатков, которые образуют временные связи с субстратом, и остатков, которые катализируют реакцию этого субстрата. Хотя активный центр занимает только ~ 10-20 % от объёма фермента он является наиболее важной частью, поскольку он непосредственно катализирует химическую реакцию. Обычно активный центр состоит из трех-четырех аминокислот, в то время как другие аминокислоты в белке необходимы для поддержания его третичной структуры.
Аммиака́ты (амми́ны, аммѝноко́мплексы) — продукты взаимодействия солей с аммиаком, комплексные соединения, содержащие в качестве лигандов молекулы аммиака. Лиганды NH3 связаны в аммиакатах с центральным атомом металла через азот.
Вале́нтность — способность атомов образовывать определённое количество химических связей, которые образует атом, или число атомов, которое может присоединить или заместить атом данного элемента.
Карбони́лы мета́ллов, карбони́льные_ко́мплексы — координационные комплексы переходных металлов с монооксидом углерода, являющегося лигандом. Многие карбонилы металлов очень летучи.
Ко́мплексные соедине́ния или координацио́нные соедине́ния — это соединения, которые образуются в результате присоединения к данному иону, называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений была предложена в 1893 г. А. Вернером.
Лига́нд — атом, ион или молекула, связанные с другим атомом (акцептором) с помощью донорно-акцепторного взаимодействия. Понятие применяется в химии комплексных соединений, обозначая присоединенные к одному или нескольким центральным (комплексообразующим) атомам металла частицы.
Координационное число — характеристика, которая определяет число ближайших частиц в молекуле или кристалле.
В биохимии и фармакологии лиганд — это химическое соединение, которое образует комплекс с той или иной биомолекулой и производит, вследствие такого связывания, те или иные биохимические, физиологические или фармакологические эффекты. В случае связывания лиганда с белком лиганд обычно является малой сигнальной молекулой, связывающейся со специфическим участком связывания на белке-мишени. В случае связывания лиганда с ДНК лиганд обычно также является малой молекулой или ионом, или белком который связывается с двойной спиралью ДНК.
Реакция Хека — катализируемое комплексами палладия сочетание алкил- и арилгалогенидов с алкенами, содержащими при двойной связи хотя бы один атом водорода. Реакция была открыта американским химиком Ричардом Хеком в 1968 году. Ошибочно используемое название «реакция Мизороки — Хека» возникло из-за многочисленных ссылок на работу 1971 года под авторством японского химика Т. Мизороки, где он также описывает данную реакцию, и работу Хека, датированную 1972 годом, хотя первооткрывателем Хек стал четырьмя годами раньше. Изначально реакция была открыта как сочетание арилртутных соединений с алкенами в присутствии солей палладия, однако в середине 1980-х годов появился каталитический вариант и удобные методы проведения этой реакции.
Термин геометрическая координация используется в целом ряде смежных областей химии — химии/физики твердого тела и не только.
Координационная химия — раздел химии, в котором изучаются химические соединения, состоящие из центрального атома и связанных с ним молекул или ионов — лигандов.
Теория кристаллического поля — квантовохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояние иона либо атома, находящегося в электростатическом поле, создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами — как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую теорию поля лигандов, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях.
Макроцикл по определению ИЮПАК — «циклическая макромолекула или макромолекулярная циклическая часть макромолекулы» В химической литературе химики органики могут называть макроциклом любую молекулу, содержащую кольцо из более чем девяти атомов. В координационной химии понятие макроцикла даётся в более узком смысле; так здесь называют циклическую молекулу с тремя или более атомами-донорами, способными образовывать координационные связи с центральным атомом металла.
Участок[проверить перевод] связывания лиганда с рецептором, участок связывания, участок связывания лиганда c рецептором, он же домен связывания лиганда с рецептором, домен связывания, он же активный участок рецептора или активный домен рецептора — участок клеточного рецептора, с которым связывается эндогенный физиологический лиганд-агонист. Лиганд формирует с этим участком рецептора обратимую нековалентную химическую связь. При этом устанавливается химическое равновесие между несвязанным (свободным) лигандом и лигандом, связанным с рецептором — лиганд диссоциирует, присоединяется, снова диссоциирует. Процесс описывается кинетикой рецептор-лигандных взаимодействий.
Алан Маклеод Сарджесон — австралийский химик-неорганик. Известен благодаря исследованиям в области координационной химии кобальта. В его работах были установлены механизмы реакций замещения в комплексах кобальта. Было продемонстрировано, что амиды аминокислот, их сложные эфиры и эфиры фосфорной кислоты, при участии правильно подобранных комплексов металлов, могут давать высокие скорости гидролиза, аналогичные ферментативным. При его участии были открыты комплексы с координационной клеткой, которую металл занимает полностью.
Цис-транс-изомерия или геометрическая изомерия — один из видов стереоизомерии: заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла. Все геометрические изомеры относятся к диастереомерам, так как не являются зеркальными отражениями друг друга. Цис- и транс-изомеры встречаются как среди органических соединений, так и среди неорганических. Понятия цис и транс не используются в случае конформеров, двух геометрических форм, легко переходящих друг в друга, вместо них используются обозначения «син» и «анти».
Урани́л — ион с химической формулой UO2+
2, является оксикатионом урана в степени окисления +6. Имеет линейное строение, молекула образована двумя тройными связями между атомом урана и атомами кислорода. Уранил входит в состав большого числа солей и комплексных соединений. Образование комплексов происходит преимущественно с кислородсодержащими лигандами, атомы кислорода которых обладают донорными свойствами по отношению к центральному катиону UO2+
2. В координационную сферу комплексов уранила могут входить четыре и более лигандов, располагающихся в экваториальной плоскости вокруг центрального катиона. Комплексы уранила имеют важное значение при извлечении урана из его руд и в производстве ядерного топлива.
Супрамолекулярная сборка представляет собой комплекс молекул, удерживаемых вместе нековалентными связями. В то время как супрамолекулярная сборка может состоять просто из двух молекул или из определённого числа стехиометрически взаимодействующих молекул внутри четвертичного комплекса, она чаще используется для обозначения более крупных комплексов, состоящих из неопределенного числа молекул. молекул, образующих сферические, палочковидные или пластинчатые формы. Коллоиды, жидкие кристаллы, биомолекулярные конденсаты, мицеллы, липосомы и биологические мембраны являются примерами надмолекулярных ансамблей. Размеры супрамолекулярных ансамблей могут варьироваться от нанометров до микрометров. Таким образом, они позволяют получить доступ к наноразмерным объектам, используя подход «снизу вверх», за гораздо меньшее количество шагов, чем одна молекула аналогичных размеров.