Алгебраи́ческая тополо́гия — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов, а также поведение этих объектов под действием различных топологических операций.
Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Метри́ческое простра́нство — множество вместе со способом измерения расстояния между его элементами. Является центральным понятием геометрии и топологии.
Нормированное пространство — векторное пространство с заданной на нём нормой; один из основных объектов изучения функционального анализа.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Сопряжённые функторы — пара функторов, состоящих в определённом соотношении между собой. Понятие сопряжённых функторов и сам термин были предложены Даниэлем Каном в 1956 году. Сопряжённые функторы часто встречаются в разных областях математики.
Теория гомоло́гий — раздел математики, который изучает конструкции некоторых топологических инвариантов, называемых группами гомологий и группами когомологий. Также теориями гомологий называют конкретные конструкции групп гомологий.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Гомотопи́ческие гру́ппы — инвариант топологических пространств, одно из основных понятий алгебраической топологии.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
В функциональном анализе и связанных областях математики стереотипные пространства представляют собой класс топологических векторных пространств, выделяемый неким специальным условием рефлексивности. Этот класс обладает серией замечательных свойств, в частности, он весьма широк, он состоит из пространств, подчиненных определенному условию полноты, и образует замкнутую моноидальную категорию со стандартными аналитическими средствами построения новых пространств, такими как переход к замкнутому подпространству, факторпространству, проективному и инъективному пределам, пространству операторов, тензорным произведениям, и т. д.
Свойство продолжения гомотопии говорит, что гомотопия на подпространстве может быть продолжена до гомотопии на всём топологическом пространстве.
Конфигурационное пространство в топологии — множество наборов различных точек заданного топологического пространства.
Первая группа когомологий топологического пространства — абелева группа, состоящая из аддитивных целозначных функций на первой группе гомологий этого пространства. Она является простейшим вариантом групп когомологий — одного из центральных понятий теории гомологий и алгебраической топологии.