Космическая погода

Перейти к навигацииПерейти к поиску
Полярное сияние, наблюдаемое с борта шаттла «Дискавери». Май 1991 года.

Космическая погода (англ. space weather) — в широком употреблении термин появился в 1990-х годах, как охватывающий наиболее практически важные аспекты науки о солнечно-земных связях[1]. Раздел научных знаний, называемый «Солнечно-земные связи», посвящён изучению совокупности всех возможных взаимодействий гелио- и геофизических явлений. Эта наука лежит на стыке физики Солнца, солнечной системы и геофизики и занимается исследованием влияния солнечной переменности и солнечной активности через межпланетную среду на Землю, в частности на магнитосферу, ионосферу и атмосферу Земли[2]. В строго научном смысле к космической погоде относится динамическая (с характерными временами — сутки и менее) часть солнечно-земных связей, а по аналогии с земными процессами более стационарная часть часто называется «Космическим климатом». В практическом смысле к тематике космической погоды относятся, например, вопросы прогноза солнечной и геомагнитной активности, исследования воздействия солнечных факторов на технические системы (радиопомехи, радиационная обстановка и пр.), воздействия на биологические системы и людей. Одним из первых употребил понятие и словосочетание «космическая погода» А. Л. Чижевский в одной из своих публикаций начала XX века[]. Его доклад на биофизическом конгрессе был официальным признанием нового научного направления[]. Успехи в разработке основ гелиобиологии послужили избранием его в 1927 году почётным членом Академии наук США как основателя изучения влияния космической погоды на биосферу и ноосферу (психофизиологию и социальные процессы)[3].

Геомагнитная активность

К геомагнитным эффектам космической погоды в основном относятся магнитные суббури и магнитные бури.

Космическая радиация

Радиация (часто также используется термин «ионизирующее излучение») — потоки элементарных частиц, ядер и электромагнитных квантов в широком диапазоне энергий[4], взаимодействие которых с веществом вызывает ионизацию его атомов и молекул, разрушение атомной и молекулярной структуры вещества. Радиация приводит к негативным последствиям как в различных технических устройствах, так и в биологических объектах. Основные практически важные источники космической радиации — это галактические космические лучи (энергетический спектр до 1019 эВ/нуклон), солнечные космические лучи (в диапазоне энергий до 1000 МэВ), электроны (до 10 МэВ) и ионы (до 400 МэВ) радиационных поясов Земли, а также солнечные кванты рентгеновского и гамма излучений. Наиболее радиационно-опасными являются частицы с энергиями более 30-50 МэВ. Для большинства типов космической радиации основным механизмом передачи энергии веществу являются ионизационные потери, то есть вырывание электрона с внешней оболочки атома за счёт передачи ему части энергии налетающей частицы или генерация электронно-дырочных пар в веществе. Кроме этого, для частиц с энергией, превышающей несколько 100 МэВ/нуклон, возможны ядерные реакции, порождающие значительное вторичное излучение (нейтроны, мезоны, гамма-кванты и фрагменты ядер), которое также следует учитывать при анализе радиационной обстановки.

Влияние на распространение радиоволн

Существование многих видов радиоволн и их применение для радиосвязи становятся возможными только благодаря наличию ионосферы. Различные возмущения ионосферы оказывают существенное влияние на распространение радиоволн вплоть до их полного поглощения или отражения, в результате чего радиосвязь между отдельными регионами на Земле может иметь заметные помехи или вовсе отсутствовать в некоторых частотных диапазонах длительное время. Изменение состояния ионосферы при активных процессах на Солнце происходит за счет возрастания потока ионизирующего излучения от Солнца, как электромагнитного — в основном рентгеновского, гамма и ультрафиолетового излучения (достигает Земли за 8 минут), так и корпускулярного — солнечные космические лучи (достигают Земли за время от нескольких десятков минут до суток), а также за счет возрастания геомагнитной активности.

Изменение орбит спутников

Изменения орбит искусственных спутников Земли происходит в результате нагрева верхней атмосферы, увеличения её размеров, возрастания концентрации и силы трения на отдельных участках траектории спутника. Это приводит к торможению спутника, изменению его орбиты и даже возможному падению. С этим эффектом связывается падение американского космического аппарата Скайлэб (Skylab) в 1979 г.

Геоиндуцированные токи

Магнитосферные и ионосферные электрические токи создают на поверхности Земли вариации геомагнитного и геоэлектрического поля, вызывающие так называемые геоиндуцированные (паразитные) токи (ГИТ) в длинных (многокилометровых) проводящих системах. Если в магнитоспокойное время эти вариации незначительны, то в магнитоактивные периоды ГИТ могут достигать десятки и даже сотни ампер, влияя на работу систем энергоснабжения, а также целого ряда других наземных технических систем, в которых длинные проводящие линии являются необходимым компонентом (трубопроводы, линии связи, железные дороги). Наиболее известной в этом смысле стала авария, вызванная магнитной бурей 13 марта 1989 г., в ходе которой 6 миллионов человек и большая часть промышленности канадской провинции Квебек на 9 часов остались без электричества.

Влияние на биологические объекты

Погодные условия, связанные как с космической, так и с земной погодой, представляют собой многофакторное воздействие на биологические объекты и организм человека[5], при этом реакция организма зависит от его магнито- и метеочувствительности, которые имеют различные индивидуальные пороги на протяжении жизни. При крайне низкой энергии воздействия факторов космической погоды по сравнению с факторами земной погоды (температура, давление и т. д.) гелиогеофизические факторы воздействуют на организмы опосредовано: гелиогеомагнитные ритмы завели «биологические часы», так же как освещенность и температура сформировали циркадианный (суточный) эндогенный ритм, а гелиогеомагнитные возмущения вносят «сбои» гелиогеомагнитных ритмов и должны вызывать реакцию адаптивного стресса у биологических объектов, в особенности, в состоянии их неустойчивости или болезни. Характерными мишенями геомагнитных и метеовоздействий являются кровеносная система, сердечно-сосудистая система, вегетативная нервная система, легкие, а основные группы риска: I — больные с патологией сердечно-сосудистой системы, в особенности перенёсшие инфаркт миокарда; II — здоровые люди с функциональным перенапряжением адаптационной системы (космонавты, летчики трансконтинентальных перелетов, операторы и диспетчеры энергетических станций, аэропортов и т. д.); III — дети в период бурного развития с несформировавшейся адаптационной системой[6].

Следует отметить, что прогноз и профилактика эффектов космической и земной погоды должны быть адресными и адресоваться, в основном, специалистам, работающим с группами риска, для того чтобы не вызывать излишнего ажиотажа и ложных стрессов у мнительных, но не метео- или магниточувствительных людей, и применения профилактических и лечебных средств теми, кто в них не нуждается.

Предсказание эффектов космической погоды

В настоящее время точные математические модели, описывающие процессы солнечно-земной физики, отсутствуют. Поэтому в основу прогнозов положены феноменологические, вероятностные модели, то есть модели, описывающие последовательность физических явлений, каждый шаг которой может выполняться с некоторой вероятностью менее 100 %, и вероятность реализации полной цепочки может быть ниже порога, когда её можно учитывать на практике. Используют 27-45-суточный, 7-суточный, 2-суточный и 1-часовой прогноз. Каждый из этих типов прогнозов использует разность в скорости электромагнитного сигнала и скорости распространения возмущения и опирается на дистанционное наблюдение явления на Солнце или локальное измерение вблизи Земли[7].

27-45-суточный прогноз опирается на текущие наблюдения Солнца и предсказывает возмущения на Солнце в период, когда через оборот Солнца, составляющий 27 суток, в сторону Земли будет обращена та же сторона Солнца.

7-суточный прогноз опирается на текущие наблюдения Солнца вблизи восточного лимба и предсказывает возмущения Солнца, когда область вблизи лимба переместится к линии Солнце-Земля (к центральному меридиану).

2-суточный прогноз опирается на текущие наблюдения Солнца, когда вблизи центрального меридиана произошли явления, которые могут повлечь за собой возмущения в околоземном пространстве (возмущения плазмы от Солнца к Земле распространяются в среднем от 1,5 до 5 суток, солнечные космические лучи — несколько часов).

1-часовой прогноз опирается на прямые измерения параметров плазмы и магнитного поля на космических аппаратах, расположенных, как правило, в передней либрационной точке L1 на расстоянии 1,5 млн км от Земли вблизи линии Солнце-Земля.

Надежность 2-суточного и 1-часового прогноза составляют, соответственно, около 30-50 % и 95 %. Остальные прогнозы носят лишь общий информационный характер и имеют ограниченное практическое применение.

Примечания

  1. Солнечно-земные связи и космическая погода Архивная копия от 13 декабря 2014 на Wayback Machine, под редакцией А. А. Петруковича, гл. 8 в кн. Плазменная гелиогеофизика, М., Наука, 2008
  2. СО́ЛНЕЧНО-ЗЕМНЫ́Е СВЯ́ЗИ : [арх. 15 июня 2022] / В.Д. Кузнецов // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  3. Меморандум о научных трудах профессора доктора А. Л. Чижевского Архивная копия от 28 марта 2018 на Wayback Machine, Нью-Йорк, 1939
  4. Архивированная копия. Дата обращения: 19 сентября 2013. Архивировано из оригинала 21 сентября 2013 года.
  5. Влияние космической погоды на человека в космосе и на Земле: Труды Международной конференции. ИКИ РАН, Москва, Россия, 4-8 июня 2012. / Под ред. А. И. Григорьева, Л. М. Зелёного. В 2-х т. М.: ИКИ РАН, 2013. (Том 1 [1] Архивная копия от 10 декабря 2014 на Wayback Machine, 456 с. 14,1МБ), (Том 2, [2] Архивная копия от 10 декабря 2014 на Wayback Machine, 360 с. 16,1МБ)
  6. Бреус Т. К. Космическая и земная погода и их влияние на здоровье и самочувствие людей. В книге «Методы нелинейного анализа в кардиологии и онкологии. Физические подходы и клиническая практика» Архивная копия от 13 июня 2010 на Wayback Machine, УНИВЕРСИТЕТ КНИЖНЫЙ ДОМ, Москва 2010 (pdf, 6,3Mb)
  7. Копик А. «Предсказуема ли космическая погода?» (Интервью дает Петрукович А. А.) Архивная копия от 28 января 2015 на Wayback Machine Новости космонавтики, 2005, Т. 15, № 3 (266)

Литература

  • Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, пер. с англ., М., 1980.
  • Физика космоса. Маленькая энциклопедия / Под ред. Р. А. Сюняева. М.: Сов. энциклопедия, 1986. 783 с.
  • Плазменная гелиогеофизика / Под ред. Л. М. Зелёного, И. С. Веселовского. В 2-х т. М.: Физ-матлит, 2008. Т. 1. 672 с.; Т. 2. 560 с.

Ссылки