Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Сопряжённые функторы — пара функторов, состоящих в определённом соотношении между собой. Понятие сопряжённых функторов и сам термин были предложены Даниэлем Каном в 1956 году. Сопряжённые функторы часто встречаются в разных областях математики.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
Уравнитель в теории категорий — обобщение понятия решения некоторого уравнения, то есть множества, на котором данные отображения совпадают.
Экспоненциал — теоретико-категорный аналог множества функций в теории множеств. Категории, в которых существуют конечные пределы и экспоненциалы, называются декартово замкнутыми.
Расслоённое произведение — теоретико-категорное понятие, определяемое как предел диаграммы, состоящей из двух морфизмов: . Расслоённое произведение часто обозначают как .
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Унивалентный функтор — функтор, который инъективен на каждом множестве морфизмов с фиксированными образом и прообразом. Полный функтор — двойственное понятие — функтор, который сюръективен на каждом множестве морфизмов с фиксированным образом и прообразом.
Двойственность в теории категорий — соотношение между свойствами категории C и так называемыми двойственными свойствами двойственной категории Cop. Взяв утверждение, касающееся категории C и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории Cop. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.
Коуравнитель — теоретико-категорное обобщение понятия фактора по отношению эквивалентности. Это понятие двойственно к понятию уравнителя, отсюда и название.
Категория запятой — специальная теоретико-категорная конструкция, позволяющая изучать морфизмы не как соотнесения объектов категории друг с другом, а как самостоятельные объекты. Строится как особая категория для произвольной пары функторов в общую категорию, описана Ловером как обобщение категорий объектов и морфизмов. Название «категория запятой» появилось из-за первоначального обозначения Ловера; впоследствии стандартное обозначение изменилось из соображений удобства, но название для конструкции сохранилось.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.
Лемма Йонеды (Ёнэды) — результат о функторе Hom; теоретико-категорное обобщение классической теорико-групповой теоремы Кэли. Лемма позволяет рассмотреть вложение произвольной категории в категорию функторов из неё в категорию множеств. Является важным инструментом, позволившим получить множество результатов в алгебраической геометрии и теории представлений.
Лемма о змее — инструмент, используемый в математике, особенно в гомологической алгебре, для построения длинных точных последовательностей. Лемма о змее верна в любой абелевой категории и играет ключевую роль в гомологической алгебре и её приложениях, например в алгебраической топологии. Гомоморфизмы, построенные с её помощью, обычно называют связывающими гомоморфизмами.
Производная категория D(A) абелевой категории A представляет собой конструкцию из гомологической алгебры, введённую для уточнения и в определённом смысле упрощения теории производных функторов, определённых на A. Конструкция определяется таким образом, что объектами D(A) становятся цепные комплексы объектов из A, причем два таких комплекса считаются изоморфными, когда существует гомоморфизм между этими комплексами, индуцирующий изоморфизм гомологий этих комплексов. Затем для цепных комплексов можно определить производные функторы, уточняя понятие гиперкогомологий. Определения приводят к существенному упрощению формул, в противном случае описываемых сложными спектральными последовательностями.