Автотро́фы, или автотро́фные органи́змы — организмы, синтезирующие органические вещества из неорганических. Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная водоросль эвглена зелёная на свету является автотрофом, а в темноте — гетеротрофом.
Цианобактериа́льные маты — высокоинтегрированные прокариотные сообщества, зачастую связанные синтрофическими отношениями, в которые входят фотосинтезирующие цианобактерии, факультативные аэробы и анаэробы.
Хлорофи́лл — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет. При его участии происходит фотосинтез. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и близки гему. Хлорофилл зарегистрирован в качестве пищевой добавки Е140.
Фотоси́нтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов.
Фотохи́мия — раздел физической химии и химии высоких энергий — изучает превращения химических веществ, протекающие под действием электромагнитного излучения в ультрафиолетовом, видимом и ближнем инфракрасном диапазонах.
Пурпурные бактерии — разнородная группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Пурпурные бактерии относятся к классам альфа-, бета-, и гамма-протеобактерий.
Определение жизнепригодности системы красного карлика помогает в поиске внеземной жизни, так как красные карлики составляют большинство звёзд Галактики. В то время как относительно малое количество излучаемой энергии, небольшой размер и близость к звезде обитаемой зоны, и следовательно высокая вероятность попадания планеты в приливный захват даже в обитаемой зоне, и высокая изменчивость звезды являются значительными препятствиями для возникновения и поддержания жизни, однако распространённость и долговечность красных карликов являются положительными факторами.
Хлорофилл f — форма хлорофилла, обнаруженная в 2010 году в строматолитах западно-австралийского залива Шарк. От других форм хлорофилла он отличается тем, что его спектр поглощения сильно смещён в длинноволновую часть красной области. Открытие совершила группа учёных из Сиднейского университета под руководством доктора Мин Чена, и это первое обнаружение новой формы хлорофилла за последние 60 лет.
Хлорофилл d — один из хлорофиллов, 3-дезвинил-3-формил-хлорофилл а. В растворах органических растворителей имеет красный максимум поглощения в области 690—697 нм, сдвинутый на 30 нм в длинноволновую сторону по сравнению с хлорофиллом a, а в живых организмах — 710 нм, то есть уже на границе инфракрасной области.
Хлорофи́лл a — особая форма хлорофилла, используемая для оксигенного фотосинтеза. Сильнее всего поглощает свет в фиолетово-голубой и оранжево-красной части спектра. Этот пигмент жизненно необходим для фотосинтеза в клетках эукариот, цианобактерий и прохлорофитов из-за своей способности отдавать возбуждённые электроны в электрон-транспортную цепь. Хлорофилл a также является частью антенного комплекса и передаёт резонансную энергию, которая затем поступает в реакционный центр, где расположены специальные хлорофиллы P680 и P700.
Светособирающие комплексы — пигмент-белковые комплексы фотосинтезирующих организмов, локализованные в фотосинтетических мембранах и выполняющие функцию первичного поглощения квантов света с последующей миграцией энергии возбуждения к реакционным центрам фотосистем. Также они обеспечивают тонкую настройку фотосинтетического аппарата и участвуют в его защите от фотоповреждений.
Heliobacteriaceae (лат.) (гелиобактерии) — небольшое семейство бактерий, которые получают энергию через фотосинтез, используя реакционный центр, сходный с фотосистемой I. Морфологически представляют собой одноклеточные плейоморфные палочковидные или спиральные организмы. Могут передвигаться путём скольжения или с помощью жгутиков.
Реакционный центр — комплекс белков, пигментов и других кофакторов, взаимодействие которых обеспечивает реакцию превращения энергии света в химическую при фотосинтезе. Реакционный центр получает энергию или через непосредственное возбуждение одной из своих молекул или через перенос энергии от светособирающих комплексов, что даёт начало цепочке химических реакций, происходящей на связанных белками кофакторах. Эти кофакторы — светопоглощающие молекулы такие как хлорофилл, феофитин и хиноны. Энергия фотона используется для поднятия электрона на более высокий энергетический уровень. Запасённая таким образом свободная энергия идёт на восстановление цепочки акцепторов электрона с более высоким редокс-потенциалом.
Эффект усиления Эмерсона, или просто эффект Эмерсона — усиление эффективности фотосинтеза при одновременном облучении хлоропластов светом с длинной волны в 670 нм (коротковолновый) и 700 нм. При одновременном освещении как длинноволновым, так и коротковолновым красным светом эффективность фотосинтеза оказывается значительно выше, чем сумма эффективностей при освещении только коротковолновым или длинноволновым красным светом. Открытие этого эффекта позволило Эмерсону предположить, что в световых реакциях фотосинтеза принимают участие две фотосистемы, одна из которых поглощает коротковолновый, а другая длинноволновый красный свет.
Cпектр действия фотосинтеза — кривая зависимости интенсивности фотосинтеза от длины волны падающего света. Эта зависимость даёт понять при какой длине волны света наиболее эффективно протекают фотохимические реакции фотосинтеза. Хлорофилл гораздо более эффективно поглощает красную и синюю части спектра, которые наиболее эффективны для осуществления фотосинтеза. Поэтому на графике спектра действия присутствуют два пика в красной и синей области.
Вспомогательные пигменты — светопоглощающие соединения фотосинтезирующих организмов, которые работают в сочетании с хлорофиллом а, выполняя светособирающую или светозащитную функции. К ним относятся различные формы хлорофилла, например хлорофилл b в зеленых водорослях и светособирающих антеннах высших растений или хлорофиллы с или d у других водорослей. Кроме того есть много других вспомогательных пигментов таких как каротиноиды или фикобилипротеины, которые также поглощают свет и передают его энергию на главный пигмент фотосистемы. Некоторые из этих вспомогательных пигментов, в частности каротиноиды, служат для поглощения и рассеивания избыточной энергии света и являются антиоксидантами.
Ксантофилловый цикл, или виолаксантиновый цикл, в случае высших растений, выполняет функцию защиты фотосинтетического аппарата от избытка энергии при повышенной инсоляции. Он позволяет избежать фотоингибирования, значительно увеличив нефотохимическое тушение. Цикл включает в себя ферментативные взаимопревращения между виолаксантином и зеаксантином.
Фотосинтетически активная радиация, или, сокращённо, ФАР — часть доходящей до биоценозов солнечной радиации в диапазоне от 400 до 700 нм, используемая растениями для фотосинтеза. Этот участок спектра более или менее соответствует области видимого излучения. Фотоны с более короткой длиной волны несут слишком много энергии, поэтому могут повредить клетки, но они по большей части отфильтровываются озоновым слоем в стратосфере. Кванты с большими длинами волн несут недостаточно энергии и поэтому не используются для фотосинтеза большинством организмов.
Фотосистема представляет собой функциональную и структурную единицу белковых комплексов, которые осуществляют первичные фотохимические реакции фотосинтеза: поглощение света, преобразование энергии и перенос электронов. Фотосистемы находятся в тилакоидной мембраны растений, водорослей и цианобактерий, либо в цитоплазматической мембране фотосинтезирующих бактерий. В общем случае все фотосистемы подразделяют на два типа — подобные фотосистеме II и подобные фотосистеме I.
Гипотеза пурпурной Земли — астробиологическая гипотеза о том, что формы ранней жизни на Земле основывались на ретинале, а не на хлорофилле, в результате чего Земля из космоса казалась пурпурной, а не зелёной. Современным примером основанного на ретинале организма являются фотосинтезирующие микробы, в совокупности называемые галоархеями.