Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Фракта́л — множество, обладающее свойством самоподобия. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность, либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.
Гиперку́б — обобщение куба на случай с произвольным числом измерений.
То́чка — один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом. Нестрого можно представлять точку как неделимый элемент соответствующего математического пространства, определяемого в геометрии, математическом анализе и других разделах математики. В классической геометрии и в большинстве её обобщений все геометрические фигуры считаются состоящими из точек.
Размерность Минковского или грубая размерность ограниченного множества в метрическом пространстве равна
- ,
Крива́я Пеа́но — общее название для параметрических кривых, образ которых содержит квадрат. Другое название — заполняющая пространство кривая.
Пентеракт — пятимерный гиперкуб, аналог куба в пятимерном пространстве. Пентеракт имеет 32 вершины, 80 рёбер, 80 граней, 40 ячеек (кубов) и 10 4-мерных ячеек (тессерактов).
Изопериметри́ческое нера́венство — геометрическое неравенство, связывающее периметр замкнутой кривой на плоскости и площадь участка плоскости, ограниченной этой кривой. Этот термин также используется для различных обобщений данного неравенства.
Размерность Хаусдорфа, или хаусдорфова размерность — естественный способ определить размерность подмножества в метрическом пространстве. Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой — единице, размерность гладкой поверхности — двум и размерность множества ненулевого объёма — трём. Для более сложных (фрактальных) множеств размерность Хаусдорфа может не быть целым числом.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Кривая Гильберта — это непрерывная фрактальная заполняющая пространство кривая, впервые описанная немецким математиком Давидом Гильбертом в 1891 году, как вариант заполняющих пространство кривых Пеано, открытых итальянским математиком Джузеппе Пеано в 1890 году.
Крива́я Го́спера, или крива́я Пеа́но-Го́спера, названная по имени открывателя Билла Госпера, — это заполняющая пространство кривая. Является фрактальной кривой, подобной кривым дракона и Гильберта.
Кривые Серпинского — это рекурсивно определённая последовательность непрерывных замкнутых плоских фрактальных кривых, открытых Вацлавом Серпинским. Кривая в пределе при полностью заполняет единичный квадрат, так что предельная кривая, также называемая кривой Серпинского, является примером заполняющих пространство кривых.
Парадокс береговой линии — противоречивое наблюдение в географических науках, связанное с невозможностью точно определить длину линии побережья из-за её фракталоподобных свойств. Первое задокументированное описание данного феномена было сделано Льюисом Ричардсоном; впоследствии оно было расширено Бенуа Мандельбротом.
Четырёхмерный многогранник — многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек. Каждая грань принадлежит ровно двум ячейкам.
«Какова длина побережья Великобритании? Статистическое самоподобие и фрактальная размерность» — статья французско-американского математика Бенуа Мандельброта, впервые опубликованная в журнале Science в 1967 году. В этой статье Мандельброт рассматривает самоподобные кривые, которые имеют размерность Хаусдорфа между 1 и 2. Эти кривые представляют собой фракталы, хотя сам термин «фрактал» Мандельброт ввёл в употребление лишь в 1975 году. Статья Мандельброта является одной из первых его публикаций по тематике фракталов.
Заполняющие пространство деревья — это геометрические построения, аналогичные кривым Пеано, но имеет ветвящуюся подобно дереву структуру и корень. Заполняющее пространство дерево определяется пошаговым процессом, который даёт дерево, в котором любая точка пространства имеет конечной длины путь, который сходится к данной точке. В отличие от заполняющих пространство кривых, каждый путь в дереве короток, что позволяет любую часть пространства достичь из корня . Простейшие примеры заполняющих пространство деревьев имеют регулярную, самоподобную, фрактальную) структуру, но могут быть обобщены до нерегулярных, и даже до случайных/получаемых методом Монте-Карло вариантов. Заполняющие пространство деревья имеют интересные параллели в природе, такие как распределение потоков жидкостей, сосудистая сеть, фрактальный рост растений и много интересных связей с L-системами в информатике.
В математике кривая Осгуда — это самонепересекающаяся кривая с положительной площадью. Более формально, это кривые на евклидовой плоскости с положительной двумерной мерой Лебега.
R-дерево Гильберта, вариант R-дерева — это индексация многомерных объектов, таких как прямые, двумерные области, трёхмерные объекты или снабжённые параметрами объекты более высоких размерностей. Их можно понимать как расширение B+-деревьев на многомерные объекты.