Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек, которые соединяются множеством линий. Теория графов включена в учебные программы для начинающих математиков, поскольку:
- как и геометрия, обладает наглядностью;
- как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
- не имеет громоздкого математического аппарата ;
- имеет выраженный прикладной характер.
Теорема Фа́ри — теоретико-графовое утверждение о возможности выпрямить рёбра любого планарного графа. Иными словами, разрешение рисовать рёбра не в виде отрезков, а в виде кривых, не расширяет класс планарных графов.
В теории графов колесом Wn называется граф с n вершинами (n ≥ 4), образованный соединением единственной вершины со всеми вершинами (n-1)-цикла. Числовое обозначение колёс в литературе не устоялось — некоторые авторы используют n для обозначения длины цикла, так что их Wn означает граф Wn+1 по определению выше. Колесо может быть определено также, как 1-скелет (n-1)-угольной пирамиды.
Базис циклов неориентированного графа — множество простых циклов, которые образуют базис пространства циклов графа. Таким образом, это минимальный набор циклов, который позволяет любой эйлеров подграф представить как симметрическую разность базисных циклов.
Теорема об упаковке кругов описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости, то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки кругов утверждает, что обратное также верно:
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
В теории графов контурный ранг неориентированного графа — это минимальное число рёбер, удаление которых разрушает все циклы графа, превращая его в дерево или лес. Контурный ранг можно понимать также как число независимых циклов в графе. В отличие от соответствующей задачи нахождения разрезающего циклы набора дуг для ориентированных графов, контурный ранг r легко вычисляется по формуле
- ,
В теории графов псевдолес — это неориентированный граф, в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
Теорема Вагнера — характеризация планарных графов тесно связанная с теоремой Понтрягина — Куратовского.
В теории графов декомпозиция на ветви неориентированного графа G — это иерархическая кластеризация рёбер графа G, представленная некорневым бинарным деревом T с рёбрами из G в качестве листьев. Удаление любого ребра из T делит рёбра графа G на два подграфа, а шириной декомпозиции считается максимальное число общих вершин в любом подграфе, полученным таким образом. Ширина ветвления графа G — это минимальная ширина любой декомпозиции графа G на ветви.
Топологическая теория графов — ветвь теории графов, изучающая вложение графов в поверхности, пространственное вложение и графы как топологические пространства. В этой ветви изучаются также погружения графов.
В теории графов ухо неориентированного графа G — это путь P, у которого две конечные точки могут совпадать, но в противном случае не разрешается повторение вершин или рёбер, так что любая внутренняя точка пути P имеет в пути степень два. Ушная декомпозиция неориентированного графа G — это разбиение множества его рёбер на последовательность ушей, так что конечные точки каждого уха принадлежат ранее выделенным ушам в последовательности, при этом внутренние вершины каждого уха не принадлежат предыдущим ушам. Кроме того, в большинстве случаев первое ухо в последовательности должно быть циклом. Открытая или правильная ушная декомпозиция — это ушная декомпозиция, в которой две конечные точки каждого уха, кроме первого, отличаются.
Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо. Деревья Тремо названы именем Шарля Пьера Тремо, французского автора 19-го века, который использовал вариант поиска в глубину как стратегию выхода из лабиринта. Деревья Тремо также называют нормальными остовными деревьями, особенно в контексте бесконечных графов.
Многочлен Татта — многочлен от двух переменных, играющий большую роль в теории графов; определён для любого неориентированного графа и содержит информацию, насколько граф связен. Стандартное обозначение — .
Задача проверки планарности — это алгоритмическая задача проверки, является ли данный граф планарным (то есть, может ли он быть нарисован на плоскости без пересечения рёбер). Задача хорошо изучена в информатике и для неё было придумано много практических алгоритмов, многие из которых используют современные структуры данных. Большинство этих методов работают за время O(n) (линейное время), где n — число рёбер (или вершин) графа, что является асимптотически оптимальным алгоритмом. Вместо простого булевского значения, выход алгоритмов проверки планарности может дать вложение графа, если граф планарен, или преграду планарности, такую как подграф Куратовского, если граф не планарен.
Критерий планарности Маклейна — это описание планарных графов в терминах их пространства циклов. Критерий носит имя Саундерса Маклейна, опубликовавшего критерий в 1937. Критерий утверждает, что конечный неориентированный граф является планарным тогда и только тогда, когда пространство циклов графа имеет базис циклов, в котором каждое ребро графа принадлежит не более чем двум базисным векторам.
Периферийный цикл в неориентированном графе — цикл, который, неформально говоря, не отделяет любую часть графа от любой другой. Периферийные циклы, первым изучал Татт, Уильям Томас. Они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
Пространство циклов неориентированного графа — линейное пространство над полем , состоящее из его эйлеровых подграфов. Размерность этого пространства называется контурным рангом графа. С точки зрения алгебраической топологии циклическое пространство является первой группой гомологий графа.