Лине́йное отображе́ние — обобщение линейной числовой функции на случай более общего множества аргументов и значений. Линейные отображения, в отличие от нелинейных, достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин.
А́рка — тип архитектурной конструкции, дугообразное перекрытие проёма — пространства между двумя опорами — колоннами, пилонами. Арка, продолжающаяся в глубину, образует свод. Таким образом арка становится «направляющей» сводчатой конструкции. В истории архитектуры известны полуциркульные, стрельчатые, коробовые, возвышенные, перспективные, уплощённые, ланцетовидные, трёхлопастные и многолопастные, подковообразные, килевидные арки.
Моме́нт си́лы — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы и вектора силы . Моменты сил, образующиеся в разных условиях, в технике могут иметь названия: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент, скру́чивающий момент.
Моме́нт и́мпульса — векторная физическая величина, характеризующая количество вращательного движения и зависящая от того, сколько массы вращается, как она распределена в пространстве и с какой угловой скоростью происходит вращение.
Ковариантная производная — обобщение понятия производной для тензорных полей на многообразиях. Понятие ковариантной производной тесно связано с понятием аффинной связности.
Гармони́ческий осцилля́тор — система, которая при выведении её из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x:
- ,
Торсио́н — стержень из упругого материала, имеющий относительно небольшую крутильную жёсткость, высокую упругость и работающий на кручение.
Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.
Си́мволы Кристо́ффеля — коэффициенты координатного выражения аффинной связности, в частности, связности Леви-Чивиты. Названы в честь Эльвина Бруно Кристоффеля. Используются в дифференциальной геометрии, общей теории относительности и близких к ней теориях гравитации. Появляются в координатном выражении тензора кривизны. При этом сами символы тензорами не являются.
Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени
Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам. Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля.
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных во всём трёхмерном пространстве. Методом спуска из него можно получить решения двумерного и одномерного уравнения.
Сла́бая локализа́ция — совокупность явлений, обусловленных эффектом квантово-механической интерференции электронов самих с собой в слабо разупорядоченных материалах с металлическим типом проводимости. Явления слабой локализации являются универсальными и проявляются в любых неупорядоченных проводниках — в металлическом стекле, тонких металлических плёнках, системах с двумерным электронным газом и других мезоскопических системах.
Центростреми́тельное (норма́льное) ускоре́ние — составляющая ускорения тела, характеризующая быстроту изменения направления вектора скорости. Направлено к центру кривизны траектории, с чем и связан термин. Обозначается символом, выбранным для ускорения, с добавлением значка «нормальное»: ; в системе СИ измеряется в м/с2.
Задача Кеплера вообще представляет собой проблему отыскания движения двух сферически-симметричных тел, взаимодействующих гравитационно. В классической теории тяготения решение этой проблемы было найдено самим Исааком Ньютоном: оказалось, что тела будут двигаться по коническим сечениям, в зависимости от начальных условий — по эллипсам, параболам или гиперболам. В рамках общей теории относительности (ОТО) с пуристической точки зрения эта задача представляется плохо поставленной, так как модель абсолютно твёрдого тела невозможна в релятивистской физике, а не абсолютно твёрдые тела не будут при взаимодействии сферически-симметричными. Другой подход включает переход к точечным телам, правомерный в ньютоновской физике, но вызывающий проблемы в ОТО. Помимо этого, кроме положений и скоростей тел необходимо задать также и начальное гравитационное поле (метрику) во всём пространстве — проблема начальных условий в ОТО. В силу указанных причин точного аналитического решения задачи Кеплера в ОТО не существует, но есть комплекс методов, позволяющих рассчитать поведение тел в рамках данной задачи с необходимой точностью: приближение пробного тела, постньютоновский формализм, численная относительность.
Поля́рный моме́нт ине́рции — интегральная сумма произведений площадей, элементарных площадок dA на квадрат их расстояния от полюса — ρ2, взятого по всей площади сечения. То есть:
Бимомент — физическая величина, изгибно-крутящий момент, образуется при нагрузке профиля, расположенного под углом или при неравномерной нагрузке на профиль.
Теория изгиба балок Тимошенко была развита Степаном Прокофьевичем Тимошенко в начале XX века. Модель учитывает сдвиговую деформацию и вращательные изгибы, что делает её применимой для описания поведения толстых балок, сэндвич-панелей и высокочастотных колебаний балок, когда длина волны этих колебаний становится сравнимой с толщиной балки. В отличие от модели изгиба балок Эйлера-Бернулли модель Тимошенко приводит к уравнению четвертого порядка, которое также содержит и частные производные второго порядка. Физически учёт механизмов деформации эффективно снижает жёсткость балки и приводит к большему отклонению при статической нагрузке и к предсказанию меньших собственных частот для заданного набора граничных условий. Последнее следствие наиболее заметно для высоких частот, поскольку длина волны колебаний становится короче и расстояние между противоположно направленными сдвиговыми силами уменьшается.
Кинематика сплошной среды — раздел кинематики, изучающий движение сплошной среды, не вдаваясь в вызывающие его причины. В силу относительности движения, обязательно указание системы отсчёта, относительно которой описывается движение.