
Терпе́ны — класс углеводородов — продуктов биосинтеза общей формулы (C5H8)n, с углеродным скелетом, формально являющимся производным изопрена СН2=С(СН3)−СН=СН2.

Ретино́л (истинный витамин , - — жирорастворимый витамин, антиоксидант. В чистом виде нестабилен, встречается как в растительных продуктах, так и в животных источниках. Поэтому производится и используется в виде ретинола ацетата и ретинола пальмитата. В организме синтезируется из бета-каротина. Необходим для зрения и роста костей, здоровья кожи и волос, нормальной работы иммунной системы и т. д.

Во́доросли — гетерогенная экологическая группа преимущественно фотоавтотрофных одноклеточных, колониальных или многоклеточных организмов, обитающих, как правило, в водной среде, в систематическом отношении представляющая собой совокупность многих отделов. Вступая в симбиоз с грибами, водоросли в ходе эволюции образовали совершенно новые организмы — лишайники. Наука о водорослях называется альгологией, её изучение является одним из самых важных этапов при подготовке специалистов в области марикультуры, рыбоводства и морской экологии.

Пласти́ды — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.

Фотоси́нтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов.

Хлоропла́сты — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. У зелёных растений являются двумембранными органеллами. Под двойной мембраной имеются тилакоиды. Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, пластидная ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина.
Индика́тор — соединение, позволяющее визуализировать изменение концентрации какого-либо вещества или компонента, например, в растворе при титровании, или быстро определить pH, еН и другие параметры.

Каротино́иды — природные органические пигменты, синтезируемые бактериями, грибами, водорослями, высшими растениями и коралловыми полипами, окрашены в жёлтый, оранжевый или красный цвета.

Фотодыхание — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента цикла Кальвина.

Лютеин — пигмент, относящийся к ксантофиллам — группе кислородсодержащих каротиноидов. Ксантофиллы — главная составная часть жёлтых пигментов в листьях, цветках, плодах и почках высших растений, а также во многих водорослях и микроорганизмах. Этим термином в 1837 году шведский химик Берцелиус обозначил жёлтый пигмент, выделенный из опавших осенью жёлтых листьев. Позже под ксантофиллами стали понимать только гидроксилированные каротиноиды. Термин «лютеин» используется с XX века. В животном мире ксантофиллы, в том числе лютеин, встречаются реже.

Биологические пигменты (биохромы) — окрашенные вещества, входящие в состав тканей организмов. Цвет пигментов определяется наличием в их молекулах хромофорных групп, избирательно поглощающих свет в определённой части видимого спектра солнечного света. Пигментная система живых существ — звено, связывающее световые условия окружающей среды и обмен веществ организма. Биологические пигменты играют важную роль в жизнедеятельности живых существ.

Расти́тельные кле́тки — эукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:
- Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной — тонопластом. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
- Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластом поверх клеточной мембраны. Она отличается от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).
- Специализированные пути связи между клетками — плазмодесмы, цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках.
- Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный свет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов, пластиды имеют собственные геномы (пластомы), состоящие из около 100—120 уникальных генов. Как предполагается, пластиды и митохондрии возникли как прокариотические эндосимбионты, поселившиеся в эукариотических клетках.
- Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых (Charophyta) и порядка Trentepohliales характеризуется наличием дополнительной стадии — препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта — «формы» для строящейся клеточной пластинки.
- Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных, но у семенных растений — голосеменных и цветковых — они лишены жгутика и называются спермиями.
- Из присущих животной клетке органелл у растительной отсутствуют только центриоли.
Зеаксантин — один из распространённых пигментов каротиноидной группы (ксантофилл). Обнаруживается в растениях и некоторых микроорганизмах. Является пигментом, который придаёт паприке, кукурузе, шафрану, многим другим фруктам и ягодам характерную жёлтую окраску. Каротиноиды зеаксантин и лютеин содержатся в сетчатке глаза преимущественно в центральной зоне и играют важную роль в защите сетчатки от ультрафиолетовых и синих лучей. Зеаксантин и лютеин являются изомерами.
Электрон-транспортная цепь фотосинтеза — последовательность переносчиков электронов, расположенных на белках фотосинтетических мембран и осуществляющих фотоиндуцированный транспорт электронов, сопряжённый с трансмембранным переносом протонов против электрохимического градиента.

Светособирающие комплексы — пигмент-белковые комплексы фотосинтезирующих организмов, локализованные в фотосинтетических мембранах и выполняющие функцию первичного поглощения квантов света с последующей миграцией энергии возбуждения к реакционным центрам фотосистем. Также они обеспечивают тонкую настройку фотосинтетического аппарата и участвуют в его защите от фотоповреждений.

Фотосисте́ма I, или пластоциани́н-ферредокси́н-оксидоредукта́за — второй функциональный комплекс электрон-транспортной цепи (ЭТЦ) хлоропластов. Он принимает электрон от пластоцианина и, поглощая световую энергию, формирует сильный восстановитель П700, способный через цепь переносчиков электронов осуществить восстановление НАДФ+. Таким образом, при участии ФСI синтезируется источник электронов (НАДФН) для последующих реакций восстановления углерода в хлоропластах в цикле Кальвина. Кроме того, ФСI может осуществлять циклический транспорт электронов, сопряжённый с синтезом АТФ, обеспечивая дополнительный синтез АТФ в хлоропластах.

Фотосисте́ма II (втора́я фотосисте́ма, фотосисте́ма два, ФСII), или H2O-пластохиноноксидоредуктаза — первый функциональный комплекс электрон-транспортной цепи (ЭТЦ) хлоропластов. Он расположен в мембранах тилакоидов всех растений, водорослей и цианобактерий. Поглощая энергию света в ходе первичных фотохимических реакций, он формирует сильный окислитель — димер хлорофилла a (П680+), который через цепь окислительно-восстановительных реакций способен вызвать окисление воды.

Ксантофилловый цикл, или виолаксантиновый цикл, в случае высших растений, выполняет функцию защиты фотосинтетического аппарата от избытка энергии при повышенной инсоляции. Он позволяет избежать фотоингибирования, значительно увеличив нефотохимическое тушение. Цикл включает в себя ферментативные взаимопревращения между виолаксантином и зеаксантином.
Нефотохимическое тушение — механизм защиты фотосинтетического аппарата от света высокой интенсивности, используемый растениями и водорослями. Суть процесса заключается в поглощении избыточной энергии (тушении) синглетного возбужденного хлорофилла молекулой-акцептором с последующим переходом этой молекулы в основное энергетическое состояние при помощи усиленной внутренней конверсии. Благодаря внутренней конверсии избыточная энергия возбуждения рассеивается в виде тепла, то есть расходуется на молекулярные колебания. Нефотохимическое тушение есть почти у всех фотосинтезирующих эукариот и цианобактерий. Оно помогает регулировать и защищать фотосинтетический аппарат в условиях, когда поглощается больше света, чем может быть непосредственно использовано в фотосинтезе.

Дави́д Ио́сифович Сапо́жников — советский физиолог и биохимик растений, первооткрыватель виолоксантинового цикла.