Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Метод прогонки (англ. tridiagonal matrix algorithm) или алгоритм Томаса используется для решения систем линейных уравнений вида , где — трёхдиагональная матрица. Представляет собой вариант метода последовательного исключения неизвестных. Метод прогонки был предложен И. М. Гельфандом и О. В. Локуциевским, а также независимо другими авторами.
Многочле́ны Эрми́та — определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике.
Модель авторегрессии — скользящего среднего — одна из математических моделей, использующихся для анализа и прогнозирования стационарных временных рядов в статистике. Модель ARMA обобщает две более простые модели временных рядов — модель авторегрессии (AR) и модель скользящего среднего (MA).
В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов
- ,
Параметризо́ванный постнью́тоновский формали́зм — версия постньютоновского формализма, применимая не только к общей теории относительности, но и к другим метрическим теориям гравитации, когда движения тел удовлетворяют принципу эквивалентности Эйнштейна. В таком подходе явно выписываются все возможные зависимости гравитационного поля от распределения материи вплоть до соответствующего порядка обратного квадрата скорости света и составляется наиболее общее выражение для решения уравнений гравитационного поля и движения материи. Различные теории гравитации при этом предсказывают различные значения коэффициентов — так называемых ППН параметров — в общих выражениях. Это приводит к потенциально наблюдаемым эффектам, экспериментальные ограничения на величину которых приводят к ограничениям на ППН параметры, и соответственно — к ограничениям на теории гравитации, их предсказывающие. Можно сказать, что ППН параметры описывают различия между ньютоновой и описываемой теорией гравитации. ППН формализм применим когда гравитационные поля слабы, а скорости движения формирующих их тел малы по сравнению со скоростью света — каноническими примерами применения являются движение Солнечной системы и систем пульсаров в двойных системах.
Теория Эйнштейна — Картана (ЭК) была разработана как расширение общей теории относительности, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина материальных полей. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен общей теории относительности, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к общей теории относительности в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.
Многочлены Якоби — класс ортогональных полиномов. Названы в честь Карла Густава Якоба Якоби.
Уравнение ренормгруппы — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
Распределение Пирсона — непрерывное распределение вероятностей, плотность вероятности которого является решением дифференциального уравнения , где числа являются параметрами распределения. Частными случаями распределения Пирсона являются бета-распределение, гамма-распределение, распределение Стьюдента, показательное распределение, нормальное распределение. Распределения Пирсона широко используются в математической статистике при сглаживании распределений эмпирических данных. Для аппроксимации распределения вероятностей опытных данных численными методами вычисляют их первые четыре момента, а затем на их основе вычисляют параметры распределения Пирсона.
Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.
K-распределение — в теории вероятности и статистике семейство трёхпараметрических непрерывных вероятностных распределений. Возникает при суперпозиции двух гамма-распределений. В каждом случае производится репараметризация гамма-распределения, и параметрами распределения являются:
- среднее значение распределения;
- обычные параметры формы.
Динамические стохастические модели общего равновесия — современные макроэкономические модели, параметры которых основаны на моделировании поведения экономических агентов на микроуровне, предусматривающие также моделирование различных стохастических «шоков».
В математике структурные константы или структурные коэффициенты алгебры над полем используются для явного указания произведения двух базисных векторов в алгебре в качестве линейной комбинации. Учитывая структурные константы, результирующее произведение является билинейным и может быть однозначно расширено на все векторы в векторном пространстве, таким образом, однозначно определяя произведение для алгебры.
В математике, функции Джека получаются как проективный предел многочленов Джека, введённых Генри Джеком. Многочлен Джека это однородный, симметрический многочлен который обобщает многочлены Шура и зональные многочлены, и, в свою очередь, обобщён многочленами Хекмана – Опдама и многочленами Макдональда.