Лебрюн, Клод
Клод Лебрюн | |
---|---|
англ. Claude R. LeBrun Jr. | |
| |
Дата рождения | 26 ноября 1956 (67 лет) |
Место рождения | Даллас, Техас |
Страна | |
Род деятельности | математик |
Научная сфера | дифференциальная геометрия |
Место работы | |
Альма-матер | |
Научный руководитель | Роджер Пенроз |
Ученики | Массимилиано Понтекорво, Майкл Альбанезе |
Награды и премии | действительный член Американского математического общества (2013) |
Медиафайлы на Викискладе |
Клод Лебрю́н (англ. Claude LeBrun, р. 26 ноября 1956 года в Далласе, штат Техас) — североамериканский геометр, специалист в комплексной и дифференциальной геометрии, в первую очередь четырёхмерных многообразий, а также теории относительности. Профессор Университета штата Нью-Йорк в Стони-Бруке.
Биография
Выпускник Хансен-колледжа университета Райса (1977)[4], учился в аспирантуре в Оксфорде под руководством Пенроза, и в 1980 году защитил диссертацию Spaces of Complex Geodesics and Related Structures[5], после чего получил место в Стони-Бруке[6].
В 1994 году был приглашённым докладчиком на Международном математическом конгрессе в Цюрихе, тема доклада — Anti-self-dual metrics and Kähler geometry. В 2012 году был избран членом Американского математического сообщества. В 2016 году 60-летний юбилей Лебрюна был отмечен конференцией в Монреале.[7] В 2018 году Лебрюн получил премию фонда Саймонса,[8] а в 2020 году был произведён в выдающиеся профессоры (англ. SUNY Distinguished Professor) Стони-Брукского университета.
Диссертация
Диссертация Лебрюна углубляет труды его великого учителя в области теории твисторов. Именно, он рассматривает -мерные комплексные многообразия, снабжённые голоморфной проективной связностью; локальные геодезические относительно такой связности допускают параметризацию -мерным комплексным многообразием. Каждая точка изначального многообразия определяет подмногообразие в пространстве геодезических, поскольку каждое комплексное касательное направление в точке допускает единственную геодезическую, касательной к которой оно является. Голоморфная проективная связность на изначальном многообразии может быть восстановлена по этой сетке подмногообразий в пространстве геодезических, а малые деформации комплексной структуры на нём соответствуют малым вариациям проективной связности. Для тривиального случая проективной плоскости геодезические это проективные прямые, а параметризует их двойстванная проективная плоскость; тем самым диссертацию Лебрюна можно воспринимать как далеко идущее обобщение проективной двойственности.
Аналогичный результат был получен Лебрюном для комплексного многообразия с конформной связностью, сиречь голоморфной конформной структурой (или же полем квадратичных конусов) вкупе с тензором кручения, и пространства локальных изотропных геодезических на нём (то есть геодезических, касающихся этого поля конусов — иначе они называются светоподобными или нуль-геодезическими). В случае зануления тензора кручения, как было доказано Лебрюном, пространство изотропных геодезических допускает голоморфную контактную структуру, и обратно — наличие голоморфной контактной структуры на пространстве изотропных геодезических вынуждает кручение конформной структуры на изначальном пространстве обращаться в нуль. Этот результат имеет место только в случае, когда размерность комплексного многообразия 4 или выше; для трёхмерных многообразий Лебрюн построил каноническое вложение в четырёхмерное многообразие с конформной связностью, кривизна которой самодвойственна, при котором кручение изначальной структуры выражается через форму внешней кривизны этого вложения.
КР-твисторы трёхмерных многообразий
В 1984 году в Trans. Am. Math. Soc. была напечатана статья Лебрюна Twistor CR Manifolds and Three-Dimensional Conformal Geometry, в которой он распространил твисторную теорию также на вещественные трёхмерные многообразия с конформной структурой — то есть такие, на которых можно говорить о взаимной перпендикулярности векторов, но не их абсолютной длине (если вообразить, что времени нет, таковым, в сущности, является наше трёхмерное пространство: единица длины выбирается нами весьма произвольно, и до известной степени то, что единицу длины на Земле и единицу длины на Плутоне вообще можно осмысленно сравнивать, есть акт веры). Ему в соответствие ставится вещественно пятимерное многообразие с КР-структурой, то есть четырёхмерным контактным распределением, снабжённым полем операторов поворота на 90°, превращающим его в двумерное комплексное распределение, и к тому же удовлетворяющему условию интегрируемости, и семейством голоморфных рациональных кривых, касающихся этого комплексного распределения. Условие интегрируемости сводится к тому, что на уровне рядов Тейлора пятимерное многообразие в каждой точке можно воплотить как ряд Тейлора вещественной гиперповерхности в такой, что контактное подпространство будет в точности комплексно двумерной плоскостью, лежащей в вещественно пятимерном касательном пространстве к гиперповерхности, а оператор поворота на 90° будет в точности оператором умножения векторов в на . Обратно, по пятимерному КР-многообразию с семейством рациональных кривых изначальное трёхмерное многообразие с конформной структурой восстанавливается однозначно.
Заметим, что существование подлинных локальных карт со значениями в на твисторах Лебрюна автоматически влекло бы аналитичность функций переклейки (в силу аналитичности комплексно дифференцируемых отображений), и следовательно наличие на изначальном трёхмерном многообразии аналитической структуры.
Лебрюн получил эту структуру хитроумной геометрической конструкцией, из которой интегрируемость этой КР-структуры была очевидна (а именно рассмотрев вектора в комплексификации кокасательного расслоения, изотропные относительно конформной структуры). Миша Вербицкий дал гораздо более простое описание КР-твисторов Лебрюна. Именно, если зафиксировать риманову метрику, определяющую конформную структуру на трёхмерном многообразии , то КР-твисторы Лебрюна можно отождествить с тотальным пространством расслоением касательных векторов единичной длины. Касательное расслоение к раскладывается при помощи связности Леви-Чивиты в ортогональную прямую сумму , где — касательное пространство к единичной сфере в , а изоморфно проецируется на . Контактная плоскость в точке (где — единичный вектор) задаётся как линейная оболочка и перпендикулярного подпространства , а оператор поворота на 90° — как стандартная комплексная структура на сфере Римана по вертикали и как векторное умножение на по горизонтали (то есть в пределах ; напомним, что в размерности три задать евклидову структуру это всё равно что задать векторное произведение).[9]
Отсюда, например, можно вывести явное описание твисторов Лебрюна для круглой сферы . Именно, реализуем её как экваториальную сферу в . Единичный касательный вектор к в точке можно воспринять как пару перпендикулярных единичных векторов , где — единичная нормаль к в точке . Они задают ортогональную комплексную структуру на пространстве , определённую условием . Обратно, всякая ортогональная комплексная структура на определяет единичный касательный вектор к как образ единичной нормали под поворота на 90°. Расслоение над , вешающее над каждой точкой круглой сферы множество ортогональных комплексных структур на касательном пространстве к ней — это классические твисторы, твисторное пространство в данном случае биголоморфно , а проекция на есть кватернионное расслоение Хопфа . Соответственно, твисторы Лебрюна круглой сферы суть прообраз экваториальной при расслоении Хопфа, и тем самым вещественная гиперповерхность в , граница трубчатой окрестности нормального расслоения к проективной прямой .
Определение Вербицкого хорошо тем, что оно переносится на другой важный случай, когда на римановом многообразии имеется поле векторных произведений — а именно -многообразия; кроме того, оно позволяет определить гауссово отображение в абстрактной ситуации поверхности, лежащей в трёхмерном многообразии (сопоставляя точке поверхности единичную нормаль в ней). Однако из этого определения неочевидна ни интегрируемость этой твисторной структуры, ни даже её конформная инвариантность. Последняя может быть доказана, впрочем, изящным вычислением; из него в частности следует, что гауссово отображение поверхности в твисторы Лебрюна является голоморфным тогда и только тогда, когда эта поверхность вполне умбилична. В частности, из конформной инвариантности КР-структуры на твисторах Лебрюна следует, что конформные преобразования переводят вполне умбилические поверхности во вполне убмилические. Поскольку в таковыми являются только сферы и плоскости, отсюда следует классическая теорема Лиувилля о конформных отображениях. Условие голоморфности гауссова отображения для умбилических поверхностей может быть взято за определение КР-структуры на твисторах Лебрюна. Для сравнения, если бы мы требовали голоморфности гауссова отображения для минимальных поверхностей, мы бы пришли к твисторам Илса — Саламона, отличающихся от твисторов Лебрюна тем, что поворот на 90° в горизонтальном направлении у них берётся с обратным знаком. Поскольку в общем римановом многообразии даже локальные умбилические поверхности редки, а минимальные напротив представлены в изобилии, на твисторах Илса — Саламона имеется много голоморфных кривых; в то же время почти КР-структура на них никогда не интегрируема, что означает отсутствие даже локальных голоморфных функций — каковые, напротив, на твисторах Лебрюна представлены в изобилии в силу локальной КР-голоморфной вложимости их в .[10]
Твисторы Лебрюна были использованы Лемпертом для доказательства формальной интегрируемости комплексной структуры на пространстве узлов в трёхмерном многообразии с конформной структурой.[11]
Ортогональные комплексные структуры на 6-мерной сфере
Размерности два и шесть — единственные, в которых существование почти комплексной структуры на сфере не запрещено из соображений топологии. В размерности два это просто комплексная структура на рациональной кривой; в размерности шесть существует почти комплексная структура, получающаяся из векторного умножения на единичную нормаль к круглой сфере (впрочем, так же описывается и комплексная структура на ). Однако вопрос существования интегрируемой комплексной структуры — то есть локально биголоморфной шару в — весьма туманен. В статье 1987 года Orthogonal Complex Structures on Лебрюн показал, что такая структура не может быть ортогональной в стандартной круглой метрике на . Он рассмотрел отображение, сопоставляющее комплексной структуре во всякой точке её собственное подпространство с собственным числом , рассмотренное как трёхмерное подпространство в комплексификации объемлющего пространства . Если бы почти комплексная структура была интегрируемой, то это отображение было бы голоморфным вложением в грассманиан . Это бы давало кэлерову форму на в силу того, что грассманиан можно реализовать в проективном пространстве; но , что ведёт к противоречию.
Другие статьи
Лебрюну принадлежит около 100 статей в различных разделах геометрии и математической физики.[12]
Ссылки
- Домашняя страница профессора Лебрюна
- Клод Лебрюн на сайте «Математическая генеалогия»
Примечания
- ↑ Montenegro A. ORCID Public Data File 2023 — 2023. — doi:10.23640/07243.24204912.V1
- ↑ Montenegro A. ORCID Public Data File 2023 — 2023. — doi:10.23640/07243.24204912.V1
- ↑ Montenegro A. ORCID Public Data File 2023 — 2023. — doi:10.23640/07243.24204912.V1
- ↑ Former Rice professor awarded Nobel Prize in Physics . Дата обращения: 2 декабря 2020. Архивировано 28 ноября 2020 года.
- ↑ Spaces of complex geodesics and related structures . Дата обращения: 2 декабря 2020. Архивировано 20 января 2021 года.
- ↑ Department Directory | Mathematics Department and the Institute for Mathematical Sciences . Дата обращения: 2 декабря 2020. Архивировано 21 октября 2020 года.
- ↑ Conference on Differential Geometry . Дата обращения: 2 декабря 2020. Архивировано 10 мая 2021 года.
- ↑ 2018 Simons Fellows in Mathematics and Theoretical Physics Announced . Дата обращения: 2 декабря 2020. Архивировано 28 ноября 2020 года.
- ↑ A CR twistor space of a G2-manifold
- ↑ Liouville—Arnold connection for Lefschetz—Kovalev pencils and Eells—Salamon CR twistors . Дата обращения: 2 декабря 2020. Архивировано 3 октября 2021 года.
- ↑ Lempert, László. Loop spaces as complex manifolds. J. Differential Geom. 38 (1993), no. 3, 519—543.
- ↑ Research Articles by Claude LeBrun . Дата обращения: 2 декабря 2020. Архивировано 13 мая 2021 года.