Систе́ма счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.
Вычита́ние (убавление) — одна из вспомогательных бинарных математических операций двух аргументов, результатом которой является новое число (разность), получаемое уменьшением значения первого аргумента на значение второго аргумента. На письме обычно обозначается с помощью знака «минус»: . Вычитание — операция обратная сложению.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.
Веще́ственное число́ — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.
Прямое произведение — множество, элементами которого являются все возможные упорядоченные пары элементов заданных двух непустых исходных множеств. Предполагается, что впервые «декартово» произведение двух множеств ввёл Георг Кантор.
Умноже́ние — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями. Результат умножения называется их произведением.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
Пра́вило резолю́ций — это правило вывода, восходящее к методу доказательства теорем через поиск противоречий; используется в логике высказываний и логике первого порядка. Правило резолюций, применяемое последовательно для списка резольвент, позволяет ответить на вопрос, существует ли в исходном множестве логических выражений противоречие. Правило резолюций предложено в 1930 году в докторской диссертации Жака Эрбрана для доказательства теорем в формальных системах первого порядка. Правило разработано Джоном Аланом Робинсоном в 1965 году.
Теорема Арцела́ — утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство — пространство непрерывных функций на отрезке вещественной прямой. Названа в честь автора, Чезаре Арцела.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Анато́лий Алексе́евич Карацу́ба — советский и российский математик. Создатель первого быстрого метода в истории математики — метода умножения больших чисел.
Теорема Семереди — утверждение комбинаторной теории чисел о наличии длинных арифметических прогрессий в плотных множествах.
Теорема Рота — результат аддитивной комбинаторики, частный случай теоремы Семереди для прогрессий длины 3; утверждает присутствие арифметических прогрессий в любых достаточно плотных множествах.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
Теорема ван дер Вардена — классический результат комбинаторной теории чисел об одноцветных арифметических прогрессиях в раскрасках натуральных чисел. Теорема является типичным утверждением теории Рамсея, а также предтечей теоремы Семереди, которая положила начало большой ветви аддитивной комбинаторики.
Алгоритмическая локальная лемма Ловаcа — лемма в теоретической информатике, позволяющая конструировать объекты, подчиняющиеся определённым ограничениям.
Тригонометрическая сумма — это конечная сумма комплексных чисел, геометрически соответствующих векторам на единичной окружности, то есть вида
При доказательстве комбинаторных теорем обычно признаются и используются несколько полезных комбинаторных правил, или комбинаторных принципов. Примеры:
- Правило сложения, правило умножения и принцип включения-исключения часто используются для целей перечисления.
- Принцип Дирихле часто устанавливает существование чего-либо или используется для определения минимального либо максимального количества чего-либо в дискретном контексте.
- Биективное доказательство используется, чтобы убедиться, что два множества имеют одинаковое количество элементов.
- Многие комбинаторные тождества возникают из метода двойного счёта или метода выделенного элемента.
- Производящие функции и рекуррентные соотношения — мощные инструменты, которые можно использовать для управления последовательностями, и они могут быть полезны при исследовании многих комбинаторных ситуаций.