Лестница Мёбиуса
Ле́стница Мёбиуса — кубический циркулянтный граф с чётным числом вершин , образованный из цикла с вершинами путём добавления рёбер (называемых «перекладинами»), соединяющих противоположные пары вершин цикла. Назван так ввиду того, что состоит из циклов длины 4[1], соединённых вместе общими рёбрами и образующих топологически ленту Мёбиуса. Полный двудольный граф (граф «домики и колодцы») является лестницей Мёбиуса (в отличие от остальных имеет дополнительные циклы длины 4).
Впервые изучены Гаем и Харари[2].
Свойства
Любая лестница Мёбиуса является непланарным верхушечнным графом. Число скрещиваний лестницы Мёбиуса равно единице, и граф может быть вложен без самопересечений в тор или проективную плоскость (то есть является тороидальным графом). Ли[3] изучил вложение этих графов в поверхности более высоких родов.
Лестницы Мёбиуса являются вершинно-транзитивными, но (за исключением ) не рёберно-транзитивными — каждое ребро цикла, из которого лестница образована, принадлежит единственному 4-рёберному циклу, в то время как каждая перекладина принадлежит двум таким циклам.
Если , то является двудольным. При по теореме Брукса хроматическое число равно 3. Известно[4], что лестница Мёбиуса однозначно определяется её многочленом Татта.
Лестница Мёбиуса имеет 392 остовных дерева. Этот граф и имеют наибольшее число остовных деревьев среди кубических графов с тем же числом вершин[5][6]. Однако среди кубических графов с 10 вершинами наибольшее число остовных деревьев у графа Петерсена, который не является лестницей Мёбиуса.
Многочлены Татта лестниц Мёбиуса можно получить по простой рекуррентной формуле[7].
Миноры графа
Лестницы Мёбиуса играют важную роль в теории миноров графа. Самым ранним результатом такого типа является теорема Вагнера[8] о том, что граф, не содержащий -миноров, может быть образован с использованием сумм по клике для комбинирования планарных графов и лестницы Мёбиуса (в этой связи называют графом Вагнера.
Все 3-связные почти-планарные графы[9] являются лестницами Мёбиуса или принадлежат небольшому числу других семейств, притом остальные почти-планарные графы можно получить из этих графов с помощью ряда простых операций[10].
Почти все[] графы, не содержащие куб в качестве минора, могут быть получены из лестниц Мёбиуса в результате последовательного применения простых операций[11].
Химия и физика
В 1982 году синтезирована молекулярная структура, имеющую форму лестницы Мёбиуса[12], и с тех пор такие графы представляют интерес для химиков и химической стереографии[13], особенно в свете похожих на лестницу Мёбиуса молекул ДНК. Имея это в виду, особо изучены математические симметрии вложений лестниц Мёбиуса в [14].
Лестницы Мёбиуса используются как модель сверхпроводимого кольца в экспериментах по изучению эффектов топологии проводимости при взаимодействии электронов[15][16].
Комбинаторная оптимизация
Лестницы Мёбиуса используются также в информатике как часть подхода целочисленного программирования к задачам упаковки множеств и линейного упорядочивания. Некоторые конфигурации в этих задачах могут быть использованы для определения граней политопов, описывающих ослабление условий[англ.] линейного программирования. Эти грани называются ограничениями лестниц Мёбиуса[17][18][19][20].
См. также
- Лента Мёбиуса
- Странная петля[англ.]
- Бутылка Клейна
- Граф-лестница
Примечания
- ↑ Максорли, 1998.
- ↑ Гай, Харари, 1967.
- ↑ Ли, 2005.
- ↑ Де Мье, Нуа, 2004.
- ↑ Якобсон, Ривин, 1999.
- ↑ Valdes, 1991.
- ↑ Биггс, Дэймрелл, Сэндс, 1972.
- ↑ Вагнер, 1937.
- ↑ Почти-планарный граф — непланарный граф, у которого любой нетривиальный минор планарен
- ↑ Gubser, 1996.
- ↑ Махарри, 2000.
- ↑ Вальба, Ричардс, Хальтивангер, 1982.
- ↑ Саймон, 1992.
- ↑ Флапан, 1989.
- ↑ Мила, Стаффорд, Каппони, 1998.
- ↑ Дэн, Сюй, Лю, 2002.
- ↑ Болоташвили, Ковалёв, Гирлич, 1999.
- ↑ Борндёрфер, Вайсмантель, 2000.
- ↑ Грётшель, Юнгер, Райнельт, 1985.
- ↑ Ньюмэн, Вемпала, 2001.
Литература
- N. L. Biggs, R. M. Damerell, D. A. Sands. Recursive families of graphs // Journal of Combinatorial Theory. — 1972. — Т. 12. — С. 123–131. — doi:10.1016/0095-8956(72)90016-0.
- G. Bolotashvili, M. Kovalev, E. Girlich. New facets of the linear ordering polytope // SIAM Journal on Discrete Mathematics. — 1999. — Т. 12, вып. 3. — С. 326–336. — doi:10.1137/S0895480196300145.
- Ralf Borndörfer, Robert Weismantel. Set packing relaxations of some integer programs // Mathematical Programming. — 2000. — Т. 88, вып. 3. — С. 425–450. — doi:10.1007/PL00011381.
- Wen-Ji Deng, Ji-Huan Xu, Ping Liu. Period halving of persistent currents in mesoscopic Möbius ladders // Chinese Physics Letters. — 2002. — Т. 19, вып. 7. — С. 988–991. — doi:10.1088/0256-307X/19/7/333. — arXiv:cond-mat/0209421.
- Erica Flapan. Symmetries of Möbius ladders // Mathematische Annalen. — 1989. — Т. 283, вып. 2. — С. 271–283. — doi:10.1007/BF01446435.
- M. Grötschel, M. Jünger, G. Reinelt. On the acyclic subgraph polytope // Mathematical Programming. — 1985. — Т. 33. — С. 28–42. — doi:10.1007/BF01582009.
- M. Grötschel, M. Jünger, G. Reinelt. Facets of the linear ordering polytope // Mathematical Programming. — 1985. — Т. 33. — С. 43–60. — doi:10.1007/BF01582010.
- Bradley S. Gubser. A characterization of almost-planar graphs // Combinatorics, Probability and Computing. — 1996. — Т. 5, вып. 3. — С. 227–245. — doi:10.1017/S0963548300002005.
- Richard K. Guy, Frank Harary. On the Möbius ladders // Canadian Mathematical Bulletin. — 1967. — Т. 10. — С. 493–496. — doi:10.4153/CMB-1967-046-4.
- Dmitry Jakobson, Igor Rivin. On some extremal problems in graph theory. — 1999. — arXiv:math.CO/9907050.
- De-ming Li. Genus distributions of Möbius ladders // Northeastern Mathematics Journal. — 2005. — Т. 21, вып. 1. — С. 70–80.
- John Maharry. A characterization of graphs with no cube minor // Journal of Combinatorial Theory. — 2000. — Т. 80, вып. 2. — С. 179–201. — doi:10.1006/jctb.2000.1968.
- John P. McSorley. Counting structures in the Möbius ladder // Discrete Mathematics. — 1998. — Т. 184, вып. 1–3. — С. 137–164. — doi:10.1016/S0012-365X(97)00086-1.
- Anna De Mier, Marc Noy. On graphs determined by their Tutte polynomials // Graphs and Combinatorics. — 2004. — Т. 20, вып. 1. — С. 105–119. — doi:10.1007/s00373-003-0534-z.
- Frédéric Mila, C. A. Stafford, Sylvain Capponi. Persistent currents in a Möbius ladder: A test of interchain coherence of interacting electrons // Physical Review B. — 1998. — Т. 57, вып. 3. — С. 1457–1460. — doi:10.1103/PhysRevB.57.1457.
- Alantha Newman, Santosh Vempala. Integer Programming and Combinatorial Optimization: 8th International IPCO Conference, Utrecht, The Netherlands, June 13–15, 2001, Proceedings. — Berlin: Springer-Verlag, 2001. — Т. 2081. — С. 333–347. — (Lecture Notes in Computer Science). — doi:10.1007/3-540-45535-3_26.
- Jonathan Simon. New scientific applications of geometry and topology (Baltimore, MD, 1992). — Providence, RI: American Mathematical Society, 1992. — Т. 45. — С. 97–130. — (Proceedings of Symposia in Applied Mathematics).
- L. Valdes. Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991). — 1991. — Т. 85. — С. 143–160. — (Congressus Numerantium).
- K. Wagner. Über eine Eigenschaft der ebenen Komplexe // Mathematische Annalen. — 1937. — Т. 114. — С. 570–590. — doi:10.1007/BF01594196.
- D. Walba, R. Richards, R. C. Haltiwanger. Total synthesis of the first molecular Möbius strip // Journal of the American Chemical Society. — 1982. — Т. 104, вып. 11. — С. 3219–3221. — doi:10.1021/ja00375a051.
Ссылки
- Weisstein, Eric W. Möbius Ladder (англ.) на сайте Wolfram MathWorld.