Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.
Дифференци́руемая фу́нкция — это функция, у которой существует дифференциал. Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Опера́тор — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой. Понятие оператора используется в различных разделах математики для отличия от другого рода отображений ; точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию.
Линейная функция — функция вида
- .
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Критерий Поста — одна из центральных теорем в теории булевых функций, устанавливающая необходимое и достаточное условие для того, чтобы некоторый набор булевых функций обладал достаточной выразительностью, чтобы представить любую булеву функцию. Впервые сформулирован американским математиком Эмилем Постом.
Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ).
BelT — государственный стандарт симметричного шифрования и контроля целостности Республики Беларусь. Полное название стандарта — СТБ 34.101.31-2007 «Информационные технологии и безопасность. Криптографические алгоритмы шифрования и контроля целостности». Принят в качестве предварительного стандарта в 2007 году. Введен в действие в качестве окончательного стандарта в 2011 году.
Бинарная диаграмма решений (БДР) или "программа с ветвлением" является формой представления булевой функции от переменных в виде направленного ациклического графа, состоящего из внутренних узлов решений, каждый из которых имеет по два потомка, и двух терминальных узлов, каждый из которых соответствует одному из двух значений булевой функции. В зарубежной литературе бинарные диаграммы решений и программы с ветвлением называются binary decision diagram (BDD) и branching programs (BP) соответственно.
Функциональная полнота множества логических операций или булевых функций — это возможность выразить все возможные значения таблиц истинности с помощью формул из элементов этого множества. Математическая логика обычно использует такой набор операций: конъюнкция, дизъюнкция, отрицание, импликация и эквиваленция. Это множество операций является функционально полным. Но оно не является минимальной функционально полной системой, поскольку:
Бент-функция — булева функция с чётным числом переменных, для которой расстояние Хэмминга от множества аффинных булевых функций с тем же числом переменных максимально. Бент-функции в этом смысле обладают максимальной степенью нелинейности среди всех функций с данным числом переменных и благодаря этому широко применяются в криптографии для создания шифров, максимально устойчивых к методам линейного и дифференциального криптоанализа.
Монотонная булева функция — булева функция, которая монотонно возрастает по каждому аргументу. Класс всех монотонных булевых функций является одним из пяти предполных классов.