Формула линейной интерполяции является частным случаем интерполяционной формулы Лагранжа и интерполяционной формулы Ньютона.
Геометрическая интерпретация
Геометрически это означает замену графика функции прямой, проходящей через точки и .
Уравнение такой прямой имеет вид:
отсюда для
Это и есть формула линейной интерполяции, при этом:
где — погрешность формулы линейной интерполяции.
Если интерполируемая функция имеет непрерывную вторую производную на отрезке интерполяции, то:
При этом, исходя из теоремы Ролля, справедлива оценка ошибки интерполяции:
Применение
Линейная интерполяция применяется для сокращения размера таблиц таблично заданных функций, при этом значения функции заданы в сокращённом количестве точек, а её значения в точках, отсутствующих в таблице, вычисляются по формуле линейной интерполяции.
Другой пример применения линейной интерполяции — приближенное представление данных в виде кусочно-линейной функции.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Численное интегрирование — вычисление значения определённого интеграла. Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Интерполя́ция, интерполи́рование — в вычислительной математике нахождение неизвестных промежуточных значений некоторой функции, по имеющемуся дискретному набору её известных значений, определенным способом. Термин «интерполяция» впервые употребил Джон Валлис в своём трактате «Арифметика бесконечных» (1656).
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Вейвлет-преобразование — интегральное преобразование, которое представляет собой свертку вейвлет-функции с сигналом. Вейвлет-преобразование переводит сигнал из временного представления в частотно-временное.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Элемента́рные фу́нкции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций:
степенная функция с любым действительным показателем;
показательная и логарифмическая функции;
тригонометрические и обратные тригонометрические функции.
Интерполя́ция алгебраи́ческими многочле́нами функции действительного аргумента на отрезке — нахождение коэффициентов многочлена степени меньшей или равной , принимающего при значениях аргумента значения , множество называют узлами интерполяции:
Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру и двойным интегралом по односвязной области , ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в честь английского математика Джорджа Грина.
Дельтообра́зный потенциа́л в ква́нтовой меха́нике — общее название профилей потенциальной энергии частицы, задаваемых выражениями с дельта-функцией Дирака. Такими профилями моделируется физическая ситуация, когда наличествуют очень узкие и острые максимумы или минимумы потенциала.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Интерполяционные формулы — в математике формулы, дающие приближённое выражение функции при помощи интерполяции, то есть через интерполяционный многочлен степени , значения которого в заданных точках совпадают со значениями функции в этих точках. Многочлен определяется единственным образом, но в зависимости от задачи его удобно записывать различными по виду формулами.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Тео́рия автомати́ческого управле́ния (ТАУ) — научная дисциплина, которая изучает процессы автоматического управления объектами разной физической природы. При этом при помощи математических средств выявляются свойства систем автоматического управления и разрабатываются рекомендации по их проектированию.
Потенциа́льная ступе́нька — профиль потенциальной энергии частицы , характеризующийся резким переходом от одного значения к другому. Такие профили анализируются в квантовой механике, при этом коэффициент прохождения частицы с полной энергией оказывается отличным от единицы.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.