Линейная сепарабельность

Перейти к навигацииПерейти к поиску
Два множества, не разделимых линейно в .
Два множества, разделимых линейно в .

Два множества точек в двумерном пространстве называются линейно сепарабельными (линейно разделимыми), если они могут быть полностью отделены единственной прямой. Для n-мерного пространства два набора точек линейно разделимы, если они могут быть отделены (n−1)-мерной гиперплоскостью.

В математических терминах: пусть и — два множества точек в n-мерном пространстве. Тогда и линейно разделимы, если существует действительных чисел , таких, что каждая точка удовлетворяет и каждая точка удовлетворяет , где i-й компонент .

Число линейно разделимых булевых гиперкубов (функций) в зависимости от размерности пространства[1] последовательность A000609 в OEIS
Размерность Число линейно разделимых булевых гиперкубов
214
3104
41882
594572
615028134
78378070864
817561539552946
9144130531453121108

См. также

  • Сепарабельность
  • Перцептрон - устройство и алгоритм, который позволяет линейно[] разделить любые[] нелинейные множества в пространстве
  • Линейный классификатор

Примечания

  1. Gruzling, Nicolle. Linear separability of the vertices of an n-dimensional hypercube. M.Sc Thesis (англ.) : journal. — University of Northern British Columbia, 2006.